首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
天文学   15篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2005年   2篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
We present a set of rotational lightcurve measurements of the small main belt Asteroid 3169 Ostro. Our observations reveal an unambiguous, double-peaked rotational lightcurve with a peak-to-peak variation up to 1.2±0.05 mag and a synodic period of 6.509±0.001 h. From the large flux variation and the overall shape of the lightcurves, we suggest that 3169 Ostro could be a tightly bound binary or a contact binary, similar to the Trojan Asteroid 624 Hektor. A shape model of this system is proposed on the assumption that 3169 Ostro is a Roche binary described by a pair of homogeneous elongated bodies, with a size ratio of 0.87, in hydrostatic equilibrium and in circular synchronous motion around each other. The direction of the spin axis is determined modulo 180° by its J2000 ecliptic coordinates λ0=50±10°, β0=±54±5°. The binary interpretation and the pole solution adequately fit the earlier photometric observations made in 1986 and 1988. However, additional supporting lightcurves are highly desirable especially in the next mutual events occurrence of 2008 and 2009 in order to remove the pole ambiguity and to confirm unambiguously the binary nature of 3169 Ostro.  相似文献   
2.
P. Descamps 《Icarus》2010,207(2):758-768
The present paper deals with the application of the classical theory of equilibrium figures of two rotating liquid masses to the case where bodies exhibit a radially stratified internal density distribution so that they can be considered as inhomogeneous bodies. The derived ellipsoidal shape solutions are applied to five real systems of equal-sized synchronous asteroids. Furthermore, internal inhomogeneity puts strong constraints on the surface grain density. A satisfactory model fit is achieved with internal densities of asteroids steadily increasing outwards. In particular, from such an approach we derived grain densities of the considered systems in agreement with their mineralogical composition inferred from reflectance spectroscopy. According to this new approach, 4492 Debussy, presently of unknown spectral type, is predicted to appear as a C-type object with a grain density on the order of 2 g/cm3.  相似文献   
3.
Measurements of Iapetus as seen at 20 and 2.2 μm in the shadow of Saturn's ring are given, providing the thermal response to a rapidly varying heat input. The 20 μm thermal emission follows the 2.2 μm flux input closely. The observations, plus a simple diffusion calculation, imply that the surface of Iapetus is made of material having a very small thermal inertia, probably .  相似文献   
4.
Mutual event observations between the two components of 90 Antiope were carried out in 2007-2008. The pole position was refined to λ0 = 199.5 ± 0.5° and β0 = 39.8 ± 5° in J2000 ecliptic coordinates, leaving intact the physical solution for the components, assimilated to two perfect Roche ellipsoids, and derived after the 2005 mutual event season (Descamps, P., Marchis, F., Michalowski, T., Vachier, F., Colas, F., Berthier, J., Assafin, M., Dunckel, P.B., Polinska, M., Pych, W., Hestroffer, D., Miller, K., Vieira-Martins, R., Birlan, M., Teng-Chuen-Yu, J.-P., Peyrot, A., Payet, B., Dorseuil, J., Léonie, Y., Dijoux, T., 2007. Figure of the double Asteroid 90 Antiope from AO and lightcurves observations. Icarus 187, 482-499). Furthermore, a large-scale geological depression, located on one of the components, was introduced to better match the observed lightcurves. This vast geological feature of about 68 km in diameter, which could be postulated as a bowl-shaped impact crater, is indeed responsible of the photometric asymmetries seen on the “shoulders” of the lightcurves. The bulk density was then recomputed to 1.28 ± 0.04 g cm−3 to take into account this large-scale non-convexity. This giant crater could be the aftermath of a tremendous collision of a 100-km sized proto-Antiope with another Themis family member. This statement is supported by the fact that Antiope is sufficiently porous (∼50%) to survive such an impact without being wholly destroyed. This violent shock would have then imparted enough angular momentum for fissioning of proto-Antiope into two equisized bodies. We calculated that the impactor must have a diameter greater than ∼17 km, for an impact velocity ranging between 1 and 4 km/s. With such a projectile, this event has a substantial 50% probability to have occurred over the age of the Themis family.  相似文献   
5.
Highly accurate astrometric positions obtained from eclipses and occultations of planetary satellites are reported. These measurements may be used to test existing ephemerides, to improve upon them, and to fit system constants such as satellite masses and planetary zonal harmonics. Eclipse and occultation photometry of 5 uranian satellite mutual events has resulted in precise astrometry for 3 of these moons. Relative satellite positions were determined with an uncertainty of less than 10 milli-arcseconds for 4 of the events. These observations plus two additional data from C. Miller and N.J. Chanover (private communication) indicate that predictions based on the SPICE [Acton, C.H., 1996. Planet. Space Sci. 44, 65-70] ephemeris URA083 and those from the LA06 ephemeris in a paper by Arlot et al. [Arlot, J.-E., Lainey, V., Thuillot, W., 2006. Astron. Astrophys. 456, 1173-1179] are significantly more accurate than predictions generated by Christou [Christou, A.A., 2005. Icarus 178, 171-178] using the GUST86 ephemeris in the along-track component of motion. The observations indicate that Ariel, Umbriel and Titania are lagging behind their predicted positions for all of the ephemerides, but by varying distances and significance levels. Analysis of data recorded by Hidas et al. [Hidas, M.G., Christou, A.A., Brown, T.M., 2008. Mon. Not. R. Astron. Soc. 384, L38-L40] suggests a similar lag for Oberon. Photometry recorded during the ingress portion of a saturnian eclipse of Iapetus on 2007 May 5 indicates that the middle of the event occurred at geocentric UTC 02:14:58. At that moment the center of the satellite disk facing the Sun was intersected by a solar-centered ray refracted at a minimum altitude of 240 km above the 1-bar pressure level in the planet's atmosphere. The uncertainty in the timings due to observational scatter was only 5 s which equates to 16 km of Iapetus motion, but other factors increased the overall uncertainty to 111 km or 16 milli-arcseconds at the distance of Saturn from the Sun. The astrometric result is fit very well by the SPICE ephemeris SAT288.  相似文献   
6.
We report on the results of a 6-month photometric study of the main-belt binary C-type Asteroid 121 Hermione, performed during its 2007 opposition. We took advantage of the rare observational opportunity afforded by one of the annual equinoxes of Hermione occurring close to its opposition in June 2007. The equinox provides an edge-on aspect for an Earth-based observer, which is well suited to a thorough study of Hermione’s physical characteristics. The catalog of observations carried out with small telescopes is presented in this work, together with new adaptive optics (AO) imaging obtained between 2005 and 2008 with the Yepun 8-m VLT telescope and the 10-m Keck telescope. The most striking result is confirmation that Hermione is a bifurcated and elongated body, as suggested by Marchis, et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005. Icarus 178, 450-464]. A new effective diameter of 187 ± 6 km was calculated from the combination of AO, photometric and thermal observations. The new diameter is some 10% smaller than the hitherto accepted radiometric diameter based on IRAS data. The reason for the discrepancy is that IRAS viewed the system almost pole-on. New thermal observations with the Spitzer Space Telescope agree with the diameter derived from AO and lightcurve observations. On the basis of the new AO astrometric observations of the small 32-km diameter satellite we have refined the orbit solution and derived a new value of the bulk density of Hermione of 1.4 + 0.5/−0.2 g cm−3. We infer a macroscopic porosity of ∼33 + 5/−20%.  相似文献   
7.
We present mid-infrared observations of the binary L5-Trojan system (617) Patroclus-Menoetius before, during, and after two shadowing events, using the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. For the first time, we effectively observe changes in asteroid surface temperature in real time, allowing the thermal inertia to be determined very directly. A new detailed binary thermophysical model is presented which accounts for the system’s known mutual orbit, arbitrary component shapes, and thermal conduction in the presence of eclipses.We obtain two local thermal-inertia values, representative of the respective shadowed areas: and . The average thermal inertia is estimated to be , potentially with significant surface heterogeneity. This first thermal-inertia measurement for a Trojan asteroid indicates a surface covered in fine regolith. Independently, we establish the presence of fine-grained (<a few μm) silicates on the surface, based on emissivity features near 10 and similar to those previously found on other Trojans.We also report V-band observations and report a lightcurve with complete rotational coverage. The lightcurve has a low amplitude of peak-to-peak, implying a roughly spherical shape for both components, and is single-periodic with a period equal to the period of the mutual orbit, indicating that the system is fully synchronized.The diameters of Patroclus and Menoetius are 106±11 and , respectively, in agreement with previous findings. Taken together with the system’s known total mass, this implies a bulk mass density of , significantly below the mass density of L4-Trojan asteroid (624) Hektor and suggesting a bulk composition dominated by water ice.All known physical properties of Patroclus, arguably the best studied Trojan asteroid, are consistent with those expected in icy objects with devolatilized surface (extinct comets), consistent with what might be implied by recent dynamical modeling in the framework of the Nice Model.  相似文献   
8.
Anthony Mallama 《Icarus》2007,187(2):620-622
Neptune will eclipse its satellite Nereid (Neptune II) on 2007 April 27 from 00 to 06 h UT and on 2008 April 21 from 12 to 17 h UT, with uncertainties of about 3 h; and a third eclipse may occur on 2009 April 17. These events offer unique opportunities for astrometric and geophysical measurement.  相似文献   
9.
Apostolos A. Christou 《Icarus》2005,178(1):171-178
The upcoming crossing of the Sun and the Earth through the equatorial plane of the planet Uranus presents an opportunity to observe mutual eclipses and occultations of the uranian satellites. We present predictions for 321 such events from 2006 to 2010. 230 of these events are “nominal” i.e. they are predicted to occur based on the currently available ephemeris while a further 91 “grazing” events are allowable given the positional uncertainties of the satellites. Taking into account the statistical frequency of events that occur too close to the planet, during solar conjunction or are too “shallow” to observe, we conclude that about 150 events should be detectable from different longitudes around the world. We argue that a worldwide campaign of photometric observations of these events will yield, as in the case of the jovian and saturnian systems, high-precision astrometric information on the satellites toward improving their ephemerides as well as the system constants (satellite masses, uranian zonal harmonics, etc.). In addition, mathematical inversion of the lightcurves should permit, subject to the photometric quality and number of observed events, mapping of albedo variegations over the satellite hemispheres that were in darkness during the Voyager 2 encounter with the uranian system in 1985/1986.  相似文献   
10.
The occurrence of the Earth and Sun transits through the equatorial plane of Uranus will bring us the opportunity for observations only possible at that time: mutual events of the satellites, search for new faint satellites and measurement of the thickness of the rings.The predictions of the mutual events need a theoretical model of the motion of the satellites. The calculated occurrences of the occultations and eclipses highly depend on the model since these predictions are very sensitive to the relative positions of the satellites. A difference of 0.05 arcsec in latitude may make an event inexistent and the accuracy of the theoretical models is around 0.1 arcsec.In order to be sure of the occurrence of each event, we made the predictions using three theoretical models: the first one is GUST86 made by Laskar and Jacobson in 1986, the second is GUST06 based on the former model fitted by Emelianov on new observations and the third one is LA06 based on a brand new theory with an accuracy 10 times better than GUST and fitted on recent observations made since 1950.This comparison shows that some events predicted with one model are not predicted using another one. We try to select the events which will occur surely in order to help the observers to catch the best phenomena.The search for new satellites and the measurement of the thickness of the rings are planned by means of observations at the time of the transit of the Earth in the ring plane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号