首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   0篇
地球物理   2篇
地质学   1篇
天文学   420篇
  2013年   8篇
  2011年   65篇
  2010年   67篇
  2009年   57篇
  2008年   46篇
  2007年   50篇
  2006年   48篇
  2005年   27篇
  2004年   26篇
  2003年   29篇
排序方式: 共有423条查询结果,搜索用时 0 毫秒
1.
2.
We report on PFS-MEX (Planetary Fourier Spectrometer on board Mars Express) limb observations of the non-Local Thermodynamic Equilibrium emission by CO and CO2 isotopic molecules. The CO emission is observed peaking at altitudes lower than the CO2 emission peak. Two orbits have been considered, which explore latitudes from 75 to 15° N, located in local time at 11:30 and 06:40, and with Ls=138° and 168°, respectively. In general in the season considered (northern summer) the emission intensity increases going to lower latitudes. The peak emission height is also decreasing with decreasing latitude. The CO2 isotopic molecules are emitting radiance out of proportion with respect to the normal isotopic abundance, which surely indicates a strong contribution from a large number of much weaker CO2 bands, a result that will demand careful theoretical modeling. By comparison with Hitran data base we can identify, among the emitting bands, the second hot band for the 626 and 636 molecule, while for the 628 and 627 emission from the third hot bands are very possible. Other minor bands or lines are also observed in emission for the first time in Mars. In one of the two orbits considered, the orbit 1234 of MEX, we also observe at altitudes 80-85 km scattered radiation, with indication of CO2 ice aerosols as scattering centers. At the same altitude the Pathfinder descending measurements show a temperature that allows CO2 condensation. Pathfinder measurements were at 03:00 local time, while our observations are for orbit 1234 showing CO2 ice signature at 11:30 local time. These non-LTE limb emissions, with their unprecedented spectral resolution in this portion of the near infrared and their sensitivity and geographical coverage, will represent in our opinion an excellent data set for testing current theoretical models of the martian upper atmosphere.  相似文献   
3.
Ethane (C2H6), methylacetylene (CH3C2H or C3H4) and diacetylene (C4H2) have been discovered in Spitzer 10-20 μm spectra of Uranus, with 0.1-mbar volume mixing ratios of (1.0±0.1)×10−8, (2.5±0.3)×10−10, and (1.6±0.2)×10−10, respectively. These hydrocarbons complement previously detected methane (CH4) and acetylene (C2H2). Carbon dioxide (CO2) was also detected at the 7-σ level with a 0.1-mbar volume mixing ratio of (4±0.5)×10−11. Although the reactions producing hydrocarbons in the atmospheres of giant planets start from radicals, the methyl radical (CH3) was not found in the spectra, implying much lower abundances than in the atmospheres of Saturn or Neptune where it has been detected. This finding underlines the fact that Uranus' atmosphere occupies a special position among the giant planets, and our results shed light on the chemical reactions happening in the absence of a substantial internal energy source.  相似文献   
4.
We report on the detection of H2 as seen in our analysis of twilight observations of the lunar atmosphere observed by the LAMP instrument aboard NASA’s Lunar Reconnaissance Orbiter. Using a large amount of data collected on the lunar atmosphere between September 2009 and March 2013, we have detected and identified, the presence of H2 in the native lunar atmosphere, for the first time. We derive a surface density for H2 of 1.2 ± 0.4 × 103 cm−3 at 120 K. This is about 10 times smaller than originally predicted, and several times smaller than previous upper limits from the Apollo era data.  相似文献   
5.
D. Luz  F. Hourdin  S. Lebonnois 《Icarus》2003,166(2):343-358
We present a 2D general circulation model of Titan's atmosphere, coupling axisymmetric dynamics with haze microphysics, a simplified photochemistry and eddy mixing. We develop a parameterization of latitudinal eddy mixing by barotropic waves based on a shallow-water, longitude-latitude model. The parameterization acts locally and in real time both on passive tracers and momentum. The mixing coefficient varies exponentially with a measure of the barotropic instability of the mean zonal flow. The coupled GCM approximately reproduces the Voyager temperature measurements and the latitudinal contrasts in the distributions of HCN and C2H2, as well as the main features of the zonal wind retrieved from the 1989 stellar occultation. Wind velocities are consistent with the observed reversal time of the North-South albedo asymmetry of 5 terrestrial years. Model results support the hypothesis of a non-uniform distribution of infrared opacity as the cause of the Voyager temperature asymmetry. Transport by the mean meridional circulation, combined with polar vortex isolation may be at the origin of the latitudinal contrasts of trace species, with eddy mixing remaining restricted to low latitudes most of the Titan year. We interpret the contrasts as a signature of non-axisymmetric motions.  相似文献   
6.
We present profiles of the line-of-sight (l.o.s.) ionospheric wind velocities in the southern auroral/polar region of Saturn. Our velocities are derived from the measurement of Doppler shifting of the H3+ν2Q(1,0) line at 3.953 microns. The data for this study were obtained using the facility high-resolution spectrometer CSHELL on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, during the night of February 6, 2003 (UT). The l.o.s. velocity profiles finally derived are consistent with an extended region of the upper atmosphere sub-corotating with the planet: the ion velocities in the inertial reference are only 1/3 of those expected for full planetary corotation. We discuss the results in the light of recent proposals for the kronian magnetosphere, and suggest that, in this region, Saturn's ion winds may be under solar wind control.  相似文献   
7.
Using the Hubble Space Telescope's Space Telescope Imaging Spectrograph we have obtained for the first time spatially resolved 2000-3000 Å spectra of Io's Prometheus plume and adjoining regions on Io's anti-jovian hemisphere in the latitude range 60° N-60° S, using a 0.1″ slit centered on Prometheus and tilted roughly 45° to the spin axis. The SO2 column density peaked at 1.25×1017 cm−2 near the equator, with an additional 5×1016 cm−2 enhancement over Prometheus corresponding to a model volcanic SO2 output of 105 kg s−1. Apart from the Prometheus peak, the SO2 column density dropped fairly smoothly away from the subsolar point, even over regions that included potential volcanic sources. At latitudes less than ±30°, the dropoff rate was consistent with control by vapor pressure equilibrium with surface frost with subsolar temperature 117.3±0.6 K, though SO2 abundance was higher than predicted by vapor pressure control at mid-latitudes, especially in the northern hemisphere. We conclude that, at least at low latitudes on the anti-jovian hemisphere where there are extensive deposits of optically-thick SO2 frost, the atmosphere is probably primarily supported by sublimation of surface frost. Although the 45° tilt of our slit prevents us from separating the dependence of atmospheric density on solar zenith angle from its dependence on latitude, the pattern is consistent with a sublimation atmosphere regardless of which parameter is the dominant control. The observed drop in gas abundance towards higher latitudes is consistent with the interpretation of previous Lyman alpha images of Io as indicating an atmosphere concentrated at low latitudes. Comparison with previous disk-resolved UV spectroscopy, Lyman-alpha images, and mid-infrared spectroscopy suggests that Io's atmosphere is denser and more widespread on the anti-jovian hemisphere than at other longitudes. SO2 gas temperatures were in the range of 150-250 K over the majority of the anti-jovian hemisphere, consistent with previous observations. SO was not definitively detected in our spectra, with upper limits to the SO/SO2 ratio in the range 1-10%, roughly consistent with previous observations. S2 gas was not seen anywhere, with an upper limit of 7.5×1014 cm−2 for the Prometheus plume, confirming that this plume is significantly poorer in S2 than the Pele plume (S2 /SO2<0.005, compared to 0.08-0.3 at Pele). In addition to the gas absorption signatures, we have observed continuum emission in the near ultraviolet (near 2800 Å) for the first time. The brightness of the observed emission was directly correlated with the SO2 abundance, strongly peaking in the equatorial region over Prometheus. Emission brightness was modestly anti-correlated with the jovian magnetic latitude, decreasing when Io intersected the torus centrifugal equator.  相似文献   
8.
Europa is bombarded by intense radiation that erodes the surface, launching molecules into a thin “atmosphere” representative of surface composition. In addition to atoms and molecules created in the mostly water ice surface such as H2O, O2, H2, the atmosphere is known to have species representative of trace surface materials. These trace species are carried off with the 10-104 H2O molecules ejected by each energetic heavy ion, a process we have simulated using molecular dynamics. Using the results of those simulations, we found that a neutral mass spectrometer orbiting ∼100 km above the surface could detect species with surface concentrations above ∼0.03%. We have also modeled the atmospheric spatial structure of the volatile species CO2 and SO2 under a variety of assumptions. Detections of these species with moderate time and space resolution would allow us to constrain surface composition, chemistry and to study space weathering processes.  相似文献   
9.
In this work we analyze the spatial structure of Jupiter's cloud reflectivity field in order to determine brightness periodicities and power spectra characteristics together with their relationship with Jupiter's dynamics and turbulence. The research is based on images obtained in the near-infrared (∼950 nm), blue (∼430 nm) and near-ultraviolet (∼260 nm) wavelengths with the Hubble Space Telescope in 1995 and the Cassini spacecraft Imaging Science Subsystem in 2000. Zonal reflectivity scans were analyzed by means of spatial periodograms and power spectra. The periodograms have been used to search for waves as a function of latitude. We present the values of the dominant wavenumbers for latitude bands between 32° N and 42° S. The brightness power spectra analysis has been performed in the meridional and zonal directions. The meridional analysis of albedo profiles are close to a k−5 law similarly to the wind profiles at blue and infrared wavelengths, although results differ from that in the ultraviolet. The zonal albedo analysis results in two distributions characterized by different slopes. In the near infrared and blue wavelengths, average spectral slopes are n1=−1.3±0.4 for shorter wavenumbers (k<80), and n2=−2.5±0.7 for greater wavenumbers, whereas for the ultraviolet n1=−1.9±0.4 and n2=−0.7±0.4, possibly showing a different dynamical regime. We find a turning point in the spectra between both regimes at wavenumber k∼80 (corresponding to L∼1000 km) for all wavelengths.  相似文献   
10.
Series of numerical experiments are performed using a general circulation model to gain insights on the hydrologic cycle on ancient Mars. Since the state of the ancient Mars atmosphere is not well constrained, we did not try to simulate an ancient Mars climate under warm and wet condition. In stead, we used an idealized model and tried to extract general features of the hydrologic cycle by modeling an ideal land planet that has no ocean on its surface. Four different climate regimes, “warm-upright,” “warm-oblique,” “frozen-upright,” and “frozen-oblique” regimes, are recognized depending on the inclination of the spin axis (obliquity) and average surface temperature. The period of active hydrologic cycle suggested from the geomorphology on Mars seems to be consistent with that at the “warm-oblique” regime, which appears at warm (above-freezing) environment with high-obliquity (higher than about 30°) condition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号