首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   1篇
天文学   4篇
  2007年   4篇
  1997年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The garnet (Grt) and biotite (Bt) from gneisses of the Ji’an Group are characterized by diffusion zoning at the rim, but equilibrium composition of metamorphic peak is usually remained in extensive interior area. Garnet with growth zoning is also found in the kyanite zone. In the light of microarea compositional variation of Grt and Bt, the temperature and pressure at the progressive, peak and post-peak metamorphic stages are determined by correctly using Grt-Bt thermometer and GASP barometer. On this basis, a counterclockwiseP-T-t path can be constructed, which reflects the closing process of an ensialic rift belt in this region during the Early Proterozoic. The project was financially supported by the State Educational Commission Ph. D. Station Foundation (No. 96018702).  相似文献   
2.
Formulas for refining the phase of a spherical planet located a small distance from the Sun are derived. Finite heliocentric distance of the planet results in the formation on its visible disk of the geometric terminator, which is not coincident with the orthographic terminator. The visible disk is assumed to be observed from Earth in orthographic projection. We suggest introducing linear and surface phases for the geometric terminator in accordance with two existing definitions of the phase of a planet. Linear and surface phases of a planet are shown to be given by different sets of formulas. An example of the computation of the phase of Mercury is given.  相似文献   
3.
This paper analyzes the capture of comets into Halley-type and Jupiter-family orbits from the nearparabolic flux of the Oort cloud. Two types of capture into Halley-type orbits are found. The first type is the evolution of near-parabolic orbits into short-period orbits (with heliocentric orbital periods P < 200 years) as a result of close encounters with giant planets. This process is followed by a very slow drift of cometary orbits into the inner part of the Solar System. Only those comets may pass from short-period orbits into Halley-type and Jupiter-family orbits, which move in orbits with perihelion distances q < 13 au. In the second type of capture, the perihelion distances of cometary orbits become rather small (< 1.5 au) during the first stage of dynamic evolution under the action of perturbations from the Galaxy, and then their semimajor axes decrease as a result of diffusion. The capture takes place, on average, in 500 revolutions of the comet about the Sun, whereas in the first case, the comet is captured, on average, after 12500 revolutions. The region of initial orbital perihelion distances q > 4 au is found to be at least as important a source of Halley-type comets as the region of perihelion distances q < 4 au. More than half of the Halley-type comets are captured from the nearly parabolic flux with q > 4 au. The analysis of the dynamic evolution of objects moving in short-period orbits shows that the distribution of Centaurs orbits agrees well with the observed distribution corrected for observational selection effects. Hence, the hypothesis associating the origin of Centaurs with the Edgeworth-Kuiper belt and the trans-Neptunian region exclusively should be rejected.  相似文献   
4.
This study analyzes the evolution of 2 × 105 orbits with initial parameters corresponding to the orbits of comets of the Oort cloud under the action of planetary, galactic, and stellar perturbations over 2 × 109 years. The dynamical evolution of comets of the outer (orbital semimajor axes a > 104 AU) and inner (5 × 103 < a (AU) < 104) parts of the comet cloud is analyzed separately. The estimates of the flux of “new” and long-period comets for all perihelion distances q in the planetary region are reported. The flux of comets with a > 104 AU in the interval 15 AU < q < 31 AU is several times higher than the flux of comets in the region q < 15 AU. We point out the increased concentration of the perihelia of orbits of comets from the outer cloud, which have passed several times through the planetary system, in the Saturn-Uranus region. The maxima in the distribution of the perihelia of the orbits of comets of the inner Oort cloud are located in the Uranus-Neptune region. “New” comets moving in orbits with a < 2 × 104 AU and arriving at the outside of the planetary system (q > 25 AU) subsequently have a greater number of returns to the region q < 35 AU. The perihelia of the orbits of these comets gradually drift toward the interior of the Solar System and accumulate beyond the orbit of Saturn. The distribution of the perihelia of long-period comets beyond the orbit of Saturn exhibits a peak. We discuss the problem of replenishing the outer Oort cloud by comets from the inner part and their subsequent dynamical evolution. The annual rate of passages of comets of the inner cloud, which replenish the outer cloud, in the region q < 1 AU in orbits with a > 104 AU (~ 5.0 × 10?14 yr?1) is one order of magnitude lower than the rate of passage of comets from the outer Oort cloud (~ 9.1 × 10?13 yr?1).  相似文献   
5.
The nature of unidentified cometary emission lines is discussed. A model of ice particles in cometary halos as a mixture of frozen polycyclic aromatic hydrocarbons (PAHs) and acyclic hydrocarbons is considered. The properties of frozen hydrocarbon particles are described and 5–7% of the unidentified cometary emission lines are considered as the photoluminescence of frozen hydrocarbons. The positions of unidentified emission lines in the spectrum of Comet 19P/Borrelly are compared with the positions of quasi-lines in the photoluminescence spectra of PAHs that were dissolved in acyclic hydrocarbons at a temperature of 77 K and that constitute a polycrystalline solution.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号