首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   10篇
大气科学   1篇
海洋学   18篇
  2023年   1篇
  2022年   5篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   1篇
  2014年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
Submesoscale processes in marginal seas usually have complex generating mechanisms, highly dependent on the local background flow and forcing. This numerical study investigates the spatial and seasonal differences of submesoscale activities in the upper ocean of the South China Sea (SCS) and the different dynamical regimes for sub-regions. The spatial and seasonal variations of vertical vorticity, horizontal convergence, lateral buoyancy gradient, and strain rate are analyzed to compare the submesoscale phenomenon within four sub-regions, the northern region near the Luzon Strait (R1), the middle ocean basin (R2), the western SCS (R3), and the southern SCS (R4). The results suggest that the SCS submesoscale processes are highly heterogeneous in space, with different seasonalities in each sub-region. The submesoscale activities in the northern sub-regions (R1, R2) are active in winter but weak in summer, while there appears an almost seasonal anti-phase in the western region (R3) compared to R1 and R2. Interestingly, no clear seasonality of submesoscale features is shown in the southern region (R4). Further analysis of Ertel potential vorticity reveals different generating mechanisms of submesoscale processes in different sub-regions. Correlation analyses also show the vertical extent of vertical velocity and the role of monsoon in generating submesoscale activities in the upper ocean of sub-regions. All these results suggest that the sub-regions have different regimes for submesoscale processes, e.g., Kuroshio intrusion (R1), monsoon modulation (R2), frontal effects (R3), topography wakes (R4).  相似文献   
2.
本文基于卫星遥感资料和高分辨率ROMS(Regional Ocean Modeling System)数值模拟结果, 对黑潮延伸体海域典型中尺度涡旋的次中尺度特征进行了探讨。卫星观测和模拟结果显示, 黑潮延伸体涡旋海域伴随着活跃的次中尺度现象。涡旋演变与多尺度能量分析结果表明, 涡旋海域次中尺度动能的强弱与涡旋海域地转流动能有着密切联系, 锋生可能是涡旋边缘次中尺度动能增强的重要机制。次中尺度现象在中尺度涡旋海域具有沿地转流方向的复杂涡丝状结构特征, 意味着涡旋边缘较强的水平浮力梯度和地转流侧向剪切为次中尺度过程形成与发展提供了有利条件。此外, 垂向结构分析表明, 次中尺度过程能引起较大的垂向速度, 最大可达100m·day-1, 该垂向速度可以影响至混合层下200m深度处, 对海洋内部的垂向物质能量交换、海—气相互作用等有着重要的影响。  相似文献   
3.
利用卫星遥感资料和区域海洋数值模式ROMS(regional ocean modeling system)高分辨率数值模拟结果, 对南海西部夏季上升流锋面的次中尺度特征及其非地转过程进行了探讨。高分辨率卫星遥感观测和数值模拟结果显示, 南海西部夏季锋面海域存在活跃的次中尺度现象, 其水平尺度约为1~10km, 且具有O(1)罗斯贝数(Rossby number, Ro)的典型次中尺度动力学特征。进一步的诊断分析表明, 在夏季西南风的驱动下, 沿锋面射流方向的风应力(down-front wind stress)引起的跨锋面埃克曼输运有利于将海水由锋面冷水侧向暖水侧输运, 减小了锋面海域的垂向层结和Ertel位涡, 加剧了锋面的不稳定, 并形成跨锋面的垂向次级环流。高分辨率模拟结果显示, 锋面海域最大垂向流速可达100m?d -1, 显著增强了上层海洋的垂向物质交换。因此, 活跃在锋面海域的次中尺度过程可能是增强南海西部上升流海域垂向物质交换的重要贡献者。  相似文献   
4.
次中尺度过程的水平空间尺度约为0.1~10km, 时间尺度约为1天, 里查森数和罗斯贝数为0(1), 能有效地从中尺度环流中汲取能量向小尺度湍流串级, 并对上层海洋物质的垂向交换有着重要影响。本文基于水平分辨率为~500m的高分辨率ROMS(regional ocean modeling system)数值模拟结果, 采用方差椭圆方法, 评估了黑潮延伸体海域上层海洋次中尺度涡旋的各向异性特征, 并探讨了涡旋各向异性值的大小与次中尺度过程特征参数的相关性。研究结果表明, 黑潮延伸体主轴强流区域的次中尺度涡旋各向异性值明显小于两侧海域, 主轴区域的次中尺度涡旋特征明显强于流轴两侧海域, 各向异性值与次中尺度过程的强弱有着较为显著的负相关关系, 表明次中尺度过程具有较小的各向异性特征(更趋各向同性)。方差椭圆表征了涡与平均流相互作用过程中的能量反馈机制, 较大的各向同性特征意味着动能更趋正向串级。  相似文献   
5.
南海西部风驱离岸急流次中尺度锋面的动力学分析   总被引:1,自引:0,他引:1  
本文利用卫星观测资料和500 m分辨率数值模拟结果,结合理论分析,对南海西部夏季风场驱动的离岸急流海域次中尺度锋面及其不稳定对背景流场的动力学影响进行了研究。卫星观测和模拟结果表明,南海西部(WSCS)存在侧向尺度为O(1-10)km的次中尺度锋面,在地转和非地转运动的共同作用下,次中尺度密度锋面具有一阶Rossby(Ro)和Richardson(Ri)数。锋面诊断结果显示,沿锋面急流方向的风场强迫引起了显著的跨锋面Ekman净输送,有效地在跨锋面方向将表层冷水平流输送至暖水侧,导致海表浮力损失。减弱的垂向层结和增强的水平浮力梯度使得锋面海域出现负Ertel位涡(PV),表明该密度锋面易受次中尺度对称不稳定(SI)的影响。次中尺度锋面不稳定引起的跨锋面次级环流能够显著增强垂向速度,其最大值可达100 m·d-1。能量评估结果表明,次中尺度湍流的两个主要能量源,即地转剪切项(GSP)和垂向浮力通量(BFLUX)在锋面海域显著增强表明在沿锋面急流方向的风场强迫作用下,大尺度地转流的地转剪切动能和锋面有效位能能有效地通过锋面不稳定向次中尺度过程传递。因此,次中尺度锋面及其不稳定有助于增强局地垂向交换和正向串级地转能量,可以为夏季WSCS高叶绿素浓度的相干结构和锋面地转能量的正向传递提供新的动力解释。  相似文献   
6.
南海北部深水区东西构造差异性及其动力学机制   总被引:5,自引:1,他引:4  
This paper overviews research progress in observation, theoretical analysis and numerical modeling of submesoscale dynamic processes in the South China Sea(SCS) particularly during recent five years. The submesoscale processes are defined according to both spatial and dynamic scales, and divided into four subcategories as submesoscale waves, submesoscale vortexes, submesoscale shelf processes, and submesoscale turbulence. The major new findings are as follows.(1) Systematic mooring observations provide new insights into the solitary waves(ISWs) and the typhoon-forced near-inertial waves(NIWs), of which a new type of ISWs with period of 23 h was observed in the northern SCS(NSCS), and the influences of background vorticity, summer monsoon onset, and deep meridional overturning circulation on the NIWs, as well as nonlinear wave-wave interaction between the NIWs and internal tides, are better understood. On the other hand, satellite altimeter sea surface height data are used to reveal the internal tide radiation patterns and provide solid evidence for that the ISWs in the northeastern SCS originate from the Luzon Strait.(2) Submesoscale offshore jets and associated vortex trains off the Vietnam coast in the western boundary of the SCS were observed from satellite chlorophyll concentration images. Spiral trains with the horizontal scale of 15–30 km and the spacing of 50–80 km were identified.(3) 3-D vertical circulation in the upwelling region east of Hainan Island was theoretically analyzed. The results show that distribution patterns of all the dynamic terms are featured by wave-like structures with horizontal wavelength scale of 20–40 km.(4) Numerical models have been used for the research of submesoscale turbulence. Submesoscale vertical pump of an anticyclonic eddy and the spatiotemporal features of submesoscale processes in the northeastern SCS are well modeled.  相似文献   
7.
Seven-year(2005–2011) Synthetic Aperture Radar(SAR) images are applied to study oceanic eddies in the East China Sea. It is found that most of these eddies detected from the SAR images are less than 10 km, which are submesoscale eddies. Seasonal differences are evident in the distribution of eddies, with the highest and the lowest number of eddies noted in summer and winter, respectively. Since slick streaks in SAR images look dark, an eddy identified due to the slicks is referred to as "black eddy". As a result of wave-current interactions in the zones of current shear, it can be seen that an eddy exhibits a bright curve, the eddy is called "white eddy". During the seven years, 95 black eddies and 50 white eddies are identified in the study area. Black eddies are found in the whole study area while white eddies are mainly distributed in the vicinity of the Kuroshio Current. This study suggests that the distribution of the white eddy is denser around the Kuroshio because of the strong shear in the Kuroshio region. In terms of the eddy sizes, white eddies are generally smaller than black eddies.  相似文献   
8.
Ocean eddies produce strong vertical heat flux (VHF) in the upper ocean, exerting profound influences on the climate and ecosystem. Currently, mooring array provides a standard way to estimate the eddy-induced VHF (EVHF) based on the adiabatic potential density equation. Apart from the validity of adiabatic assumption, it remains unclear to what extent the estimated EVHF at a single location within a limited time period is representative of its climatological mean value. In this study, we analyzed the above issue by systematically evaluating the variability of EVHF simulated by a 1-km ocean model configured over the Kuroshio Extension. It is found that the EVHF at a single location exhibits pronounced variability. Even averaged over one year that is comparable to the current maintenance capacity of mooring array, the EVHF still deviates significantly from its climatological mean value. For more than 49% of locations in our computational domain (31°–40°N, 149°–166°E), the discrepancy between the one-year mean EVHF and its climatological mean value at the peaking depth is larger than the climatological mean itself. The mesoscale eddies play a dominant role in the variability of EVHF but contribute little to the climatological mean EVHF; the opposite is true for submesoscale eddies. Our findings indicate that nested mooring array allowing for isolating the effects of submesoscale eddies will be useful to obtain climatological mean EVHF.  相似文献   
9.
The unbalanced submesoscale motions and their seasonality in the northern Bay of Bengal(BoB) are investigated using outputs of the high resolution regional oceanic modeling system. Submesoscale motions in the forms of filaments and eddies are present in the upper mixed layer during the whole annual cycle. Submesoscale motions show an obvious seasonality, in which they are active during the winter and spring but weak during the summer and fall. Their seasonality is associated with the mixed layer...  相似文献   
10.
This paper reviews the progress in our understanding of the atmospheric response to midlatitude oceanic fronts and eddies,emphasizing the Kuroshio-Oyashio Extension(KOE)region.Oceanic perturbations of interest consist of sharp oceanic fronts,temperature anomalies associated with mesoscale eddies,and to some extent even higher-frequency submesoscale variability.The focus is on the free atmosphere above the boundary layer.As the midlatitude atmosphere is dominated by vigorous transient eddy activity in the storm track,the response of both the time-mean flow and the storm track is assessed.The storm track response arguably overwhelms the mean-flow response and makes the latter hard to detect from observations.Oceanic frontal impacts on the mesoscale structures of individual synoptic storms are discussed,followed by the role of oceanic fronts in maintaining the storm track as a whole.KOE fronts exhibit significant decadal variability and can therefore presumably modulate the storm track.Relevant studies are summarized and intercompared.Current understanding has advanced greatly but is still subject to large uncertainties arising from inadequate data resolution and other factors.Recent modeling studies highlighted the importance of mesoscale eddies and probably even submesoscale processes in maintaining the storm track but confirmation and validation are still needed.Moreover,the atmospheric response can potentially provide a feedback mechanism for the North Pacific climate.By reviewing the above aspects,we envision that future research shall focus more upon the interaction between smaller-scale oceanic processes(fronts,eddies,submesoscale features)and atmospheric processes(fronts,extratropical cyclones etc.),in an integrated way,within the context of different climate background states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号