首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10937篇
  免费   1723篇
  国内免费   3579篇
测绘学   471篇
大气科学   956篇
地球物理   2774篇
地质学   8062篇
海洋学   595篇
天文学   17篇
综合类   708篇
自然地理   2656篇
  2024年   73篇
  2023年   183篇
  2022年   414篇
  2021年   481篇
  2020年   544篇
  2019年   574篇
  2018年   540篇
  2017年   448篇
  2016年   609篇
  2015年   625篇
  2014年   762篇
  2013年   835篇
  2012年   699篇
  2011年   761篇
  2010年   693篇
  2009年   762篇
  2008年   749篇
  2007年   784篇
  2006年   849篇
  2005年   631篇
  2004年   623篇
  2003年   547篇
  2002年   496篇
  2001年   424篇
  2000年   355篇
  1999年   275篇
  1998年   259篇
  1997年   234篇
  1996年   230篇
  1995年   171篇
  1994年   128篇
  1993年   97篇
  1992年   102篇
  1991年   72篇
  1990年   59篇
  1989年   36篇
  1988年   36篇
  1987年   17篇
  1986年   16篇
  1985年   10篇
  1984年   10篇
  1983年   6篇
  1982年   3篇
  1981年   5篇
  1980年   1篇
  1979年   4篇
  1978年   4篇
  1976年   1篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Vertical drains are usually installed in subsoil consisting of several layers. Due to the complex nature of the problem, over the past decades, the consolidation properties of multi‐layered ground with vertical drains have been analysed mainly by numerical methods. An analytical solution for consolidation of double‐layered ground with vertical drains under quasi‐equal strain condition is presented in this paper. The main steps for the computation procedure are listed. The convergence of the series solution is discussed. The comparisons between the results obtained by the present analytical method and the existing numerical solutions are described by figures. The orthogonal relation for the system of double‐layered ground with vertical drains is proven. Finally, some consolidation properties of double‐layered ground with vertical drains are analysed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
2.
A coupled continuum‐discrete hydromechanical model was employed to analyse the liquefaction of a saturated loose deposit of cohesionless particles when subjected to a dynamic base excitation. The pore fluid flow was idealized using averaged Navier–Stokes equations and the discrete element method was employed to model the solid phase particles. A well established semi‐empirical relationship was utilized to quantify the fluid–particle interactions. The conducted simulations revealed a number of salient micro‐mechanical mechanisms and response patterns associated with the deposit liquefaction. Space and time variation of porosity was a major factor which affected the coupled response of the solid and fluid phases. Pore fluid flow was within Darcy's regime. The predicted response exhibited macroscopic patterns consistent with experimental results and case histories of the liquefaction of granular soil deposits. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
3.
Images from satellite platforms are a valid aid in order to obtain distributed information about hydrological surface states and parameters needed in calibration and validation of the water balance and flood forecasting. Remotely sensed data are easily available on large areas and with a frequency compatible with land cover changes. In this paper, remotely sensed images from different types of sensor have been utilized as a support to the calibration of the distributed hydrological model MOBIDIC, currently used in the experimental system of flood forecasting of the Arno River Basin Authority. Six radar images from ERS‐2 synthetic aperture radar (SAR) sensors (three for summer 2002 and three for spring–summer 2003) have been utilized and a relationship between soil saturation indexes and backscatter coefficient from SAR images has been investigated. Analysis has been performed only on pixels with meagre or no vegetation cover, in order to legitimize the assumption that water content of the soil is the main variable that influences the backscatter coefficient. Such pixels have been obtained by considering vegetation indexes (NDVI) and land cover maps produced by optical sensors (Landsat‐ETM). In order to calibrate the soil moisture model based on information provided by SAR images, an optimization algorithm has been utilized to minimize the regression error between saturation indexes from model and SAR data and error between measured and modelled discharge flows. Utilizing this procedure, model parameters that rule soil moisture fluxes have been calibrated, obtaining not only a good match with remotely sensed data, but also an enhancement of model performance in flow prediction with respect to a previous calibration with river discharge data only. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
4.
This paper proposes a multi‐level parallelized substructuring–frontal combined algorithm for the analysis of the problem of thermo/hydraulic/mechanical behaviour of unsaturated soil. Temperature, displacement, pore water pressure and pore air pressure are treated as the primary variables in a non‐linear analysis. Details are given firstly of the substructuring–frontal combined approach. The incorporation of the algorithm in a multi‐level parallel strategy is then discussed. The parallel processing can thus be carried out at different substructural levels. The method thus developed impacts, in a positive way, on both computer storage requirement and execution time. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
5.
The frequent use of soils and earth materials for hydraulic capping and for geo‐environmental waste containment motivated our interest in detailed modelling of changes in size and shape of macro‐pores to establish links between soil mechanical behaviour and concurrent changes in hydraulic and transport properties. The objective of this study was to use finite element analysis (FEA) to test and extend previous analytical solutions proposed by the authors describing deformation of a single macro‐pore embedded in linear viscoplastic soil material subjected to anisotropic remote stress. The FEA enables to consider more complex pore geometries and provides a detailed picture of matrix yield behaviour to explain shortcomings of approximate analytical solutions. Finite element and analytical calculations agreed very well for linear viscous as well as for viscoplastic materials, only limited for the case of isotropic remote stress due to the simplifications of the analytical model related to patterns and onset of matrix‐yielding behaviour. FEA calculations were compared with experimental data obtained from a compaction experiment in which pore deformation within a uniform modelling clay sample was monitored using CAT scanning. FEA predictions based on independently measured material properties and initial pore geometry provided an excellent match with experimentally determined evolution of pore size and shape hence lending credence to the potential use of FEA for more complex pore geometries and eventually connect macro‐pore deformation with hydraulic properties. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
6.
Advanced material constitutive models are used to describe complex soil behaviour. These models are often used in the solution of boundary value problems under general loading conditions. Users and developers of constitutive models need to methodically investigate the represented soil response under a wide range of loading conditions. This paper presents a systematic procedure for probing constitutive models. A general incremental strain probe, 6D hyperspherical strain probe (HSP), is introduced to examine rate‐independent model response under all possible strain loading conditions. Two special cases of HSP, the true triaxial strain probe (TTSP) and the plane‐strain strain probe (PSSP), are used to generate 3‐D objects that represent model stress response to probing. The TTSP, PSSP and general HSP procedures are demonstrated using elasto‐plastic models. The objects resulting from the probing procedure readily highlight important model characteristics including anisotropy, yielding, hardening, softening and failure. The PSSP procedure is applied to a Neural Network (NN) based constitutive model. It shows that this probing is especially useful in understanding NN constitutive models, which do not contain explicit functions for yield surface, hardening, or anisotropy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
7.
This paper presents a method that incorporates a non‐associated flow rule into the limit analysis to investigate the influence of the dilatancy angle on the factor of safety for the slope stability analysis. The proposed method retain's the advantage of the upper bound method, which is simple and has no stress involvement in the calculation of the energy dissipation and the factor of safety. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
8.
9.
Wang Yanhui 《水文研究》1992,6(2):241-251
Black locust (Robina pseudoacacia) has become one of the most important shelter species in the loess area of northwest China. This paper summarizes recent research concerning its hydrological influence, including canopy interception, litter absorption capacity, its effect on rainfall kinetic energy, infiltration rates, surface runoff, soil moisture, and evapotranspiration, and its role in soil conservation. Several predictive models are listed. on the basis of existing results, optimum characteristics for an effective plantation are defined, and problems requiring further research are identified.  相似文献   
10.
For ecosystem modelling of the Boreal forest it is important to include processes associated with low soil temperature during spring‐early summer, as these affect the tree water uptake. The COUP model, a physically based SVAT model, was tested with 2 years of soil and snow physical measurements and sap flow measurements in a 70‐year‐old Scots pine stand in the boreal zone of northern Sweden. During the first year the extent and duration of soil frost was manipulated in the field. The model was successful in reproducing the timing of the soil warming after the snowmelt and frost thaw. A delayed soil warming, into the growing season, severely reduced the transpiration. We demonstrated the potential for considerable overestimation of transpiration by the model if the reduction of the trees' capacity to transpire due to low soil temperatures is not taken into account. We also demonstrated that the accumulated effect of aboveground conditions could be included when simulating the relationship between soil temperature and tree water uptake. This improved the estimated transpiration for the control plot and when soil warming was delayed into the growing season. The study illustrates the need of including antecedent conditions on root growth in the model in order to catch these effects on transpiration. The COUP model is a promising tool for predicting transpiration in high‐latitude stands. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号