首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   8篇
  国内免费   4篇
测绘学   2篇
大气科学   4篇
地球物理   13篇
地质学   18篇
海洋学   3篇
综合类   1篇
自然地理   22篇
  2021年   2篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   4篇
  2013年   1篇
  2012年   6篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   3篇
  2006年   8篇
  2005年   4篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1997年   1篇
  1995年   2篇
  1983年   1篇
  1976年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
1.
Over the last 10 years a great interest in spineless cactus pear was shown in the drier areas in terms of both fresh fruit and fodder production. However, there is a lack of knowledge on quantitative data on root dynamics of these plants needed to fully understand its potential under water limiting conditions. This study aimed at quantifying the effects of water stress on the growth of tap roots, side roots and rain roots of the species Opuntia ficus-indica (L.) Miller (cultivar Morado—green cladode) and O. robusta Wendl. (cultivar Monterey—blue cladode). One-year-old cladodes were planted in root boxes and pots (2002/2003 season) that were kept in the greenhouse at day/night temperatures of 25–30 °C/15–18 °C. Placing the cladodes flat on the soil, more areoles came in contact with the soil and therefore more roots developed in both species with an average of only 3.4% areole complexes not rooting. Each areole complex formed on average 3 roots. The highest daily tap root growth was 42 and 36 mm for O. ficus-indica and O. robusta, respectively. Tap root growth increased in the morning with water stress for both species but decreased in the afternoon. Side root growth increased with water stress, with that of O. robusta more per tap root than O. ficus-indica. O. robusta showed a finer root system than O. ficus-indica. The side roots grew as much as 8 and 5 mm per day for O. ficus-indica and O. robusta, respectively. Whitish rain roots developed on the established roots within the first hour after rewetting the soil and grew for only 3 days. Rain roots grew up to 7 and 5 mm within a day for O. ficus-indica and O. robusta, respectively. Considering all studied aspects of their roots systems, O. robusta appears to be better adapted to drought (less sensitive to water stress) than O. ficus-indica.  相似文献   
2.
We present a new three-dimensional SV-wave velocity model for the upper mantle beneath South America and the surrounding oceans, built from the waveform inversion of 5850 Rayleigh wave seismograms. The dense path coverage and the use of higher modes to supplement the fundamental mode of surface waves allow us to constrain seismic heterogeneities with horizontal wavelengths of a few hundred kilometres in the uppermost 400 km of the mantle.The large scale features of our tomographic model confirm previous results from global and regional tomographic studies (e.g. the depth extent of the high velocity cratonic roots down to about 200–250 km).Several new features are highlighted in our model. Down to 100 km depth, the high velocity lid beneath the Amazonian craton is separated in two parts associated with the Guyana and Guapore shields, suggesting that the rifting episode responsible for the formation of the Amazon basin has involved a significant part of the lithosphere. Along the Andean subduction belt, the structure of the high velocity anomaly associated with the sudbduction of the Nazca plate beneath the South American plate reflects the along-strike variation in dip of the subducting plate. Slow velocities are observed down to about 100 km and 150 km at the intersection of the Carnegie and Chile ridges with the continent and are likely to represent the thermal anomalies associated with the subducted ridges. These lowered velocities might correspond to zones of weakness in the subducted plate and may have led to the formation of “slab windows” developed through unzipping of the subducted ridges; these windows might accommodate a transfer of asthenospheric mantle from the Pacific to the Atlantic ocean. From 150 to 250 km depth, the subducting Nazca plate is associated with high seismic velocities between 5°S and 37°S. We find high seismic velocities beneath the Paraná basin down to about 200 km depth, underlain by a low velocity anomaly in the depth range 200–400 km located beneath the Ponta Grossa arc at the southern tip of the basin. This high velocity anomaly is located southward of a narrow S-wave low velocity structure observed between 200 and 500–600 km depth in body wave studies, but irresolvable with our long period datasets. Both anomalies point to a model in which several, possibly diachronous, plumes have risen to the surface to generate the Paraná large igneous province (LIP).  相似文献   
3.
We seek to identify the depth to which water is extracted by the roots in the soil. Indeed, in an isotopic steady-state condition of leaf water, transpiration introduces into the atmosphere a vapour whose isotopic signature is identical to that of root water. In the isotopic models of atmospheric general circulation, it is classically allowed that the signature of transpiration belongs to the meteoric water line. This supposes that the water taken by the roots has escaped with the evaporation of the soil and comes thus from the deep layers of the soil. At the time of experimentation carried out on maize plants (Nemours, Seine-et-Marne, France), this extraction depth was inferred from the comparison between the signature of the water measured on the level of the first internode of the stems of the plants and the isotopic profile of water in the soil. When the flow of transpiration reaches a maximum value, the plant uptakes water resulting from precipitations and which preserves its non-evaporating character after having quickly infiltrated in the deep layers of the soil. This relates to only 55% of the flux transpired by the canopy, the remainder presenting an evaporating character more or less marked according to ambient conditions. This experiment invalidates the classical hypothesis used in isotopic models of general atmospheric circulation in temperate regions. In fact, only half the amount of water vapour transpired by the canopy during the day presents a signature similar to that of the rainwater sampled in deep soil layers. To cite this article: Z. Boujamlaoui et al., C. R. Geoscience 337 (2005).  相似文献   
4.
Exposed roots were used to estimate soil and bedrock erosion on the cut slopes of a 45-year-old road constructed in granitic soils of the Idaho Batholith. The original roadcut surface was defined by projecting a straight line from the toe of the cut past the end of the exposed root to the intersection of a straight line projected along the surface of the hillslope. A cross-sectioning technique was then used to determine erosion to the present roadcut surface. A total of 41 exposed root sites were used to estimate erosion on a 1350 m-long section of road. Average erosion was 1·0 and 1·1 cm/year for soil and bedrock respectively. Buttressing by tree roots caused lower erosion rates for soil as compared to bedrock. Both soil and bedrock erosion rates showed statistically significant correlations with the gradients of the original cut slope. The bedrock erosion data provide a reasonable estimate of the disintegration rate of exposed granitic bedrock exhibiting the weathering and fracturing properties common to this area. The road is located in a study watershed where long-term sediment yield data are available. Sediment data from adjacent study watersheds with no roads were compared to sediment data from the roaded watershed to estimate the long-term increase in sediment yield caused by the road. The increase amounts to about 2·4 m3/year. This figure, compared to the average annual on-site road erosion, provides an erosion to sediment delivery ratio of less than 10 per cent. Based on study results, road construction and maintenance practices are suggested for helping reduce roadcut erosion.  相似文献   
5.
Many studies focus on the effects of vegetation cover on water erosion rates, whereas little attention has been paid to the effects of the below ground biomass. Recent research indicates that roots can reduce concentrated flow erosion rates significantly. In order to predict this root effect more accurately, this experimental study aims at gaining more insight into the importance of root architecture, soil and flow characteristics to the erosion‐reducing potential of roots during concentrated flow. Treatments were (1) bare, (2) grass (representing a fine‐branched root system), (3) carrots (representing a tap root system) and (4) carrots and fine‐branched weeds (representing both tap and fine‐branched roots). The soil types tested were a sandy loam and a silt loam. For each treatment, root density, root length density and mean root diameter (D) were assessed. Relative soil detachment rates and mean bottom flow shear stress were calculated. The results indicate that tap roots reduce the erosion rates to a lesser extent compared with fine‐branched roots. Different relationships linking relative soil detachment rate with root density could be established for different root diameter classes. Carrots with very fine roots (D < 5 mm) show a similar negative exponential relationship between root density and relative soil detachment rate to grass roots. With increasing root diameter (5 < D < 15 mm) the erosion‐reducing effect of carrot type roots becomes less pronounced. Additionally, an equation estimating the erosion‐reducing potential of root systems containing both tap roots and fine‐branched roots could be established. Moreover, the erosion‐reducing potential of grass roots is less pronounced for a sandy loam soil compared with a silt loam soil and a larger erosion‐reducing potential for both grass and carrot roots was found for initially wet soils. For carrots grown on a sandy loam soil, the erosion‐reducing effect of roots decreases with increasing flow shear stress. For grasses, grown on both soil types, no significant differences could be found according to flow shear stress. The erosion‐reducing effect of roots during concentrated flow is much more pronounced than suggested in previous studies dealing with interrill and rill erosion. Root density and root diameter explain the observed erosion rates during concentrated flow well for the different soil types tested. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
6.
国家机构改革的进程,促使气象部门为适应社会主义市场经济和经济全球化的发展要求,加快系统的机构改革步伐。作为基层气象部门只有顺应体制改革和机制创新,才能更好地发挥公益事业单位的重要作用,也才能不断地拓宽气象服务领域,走一条符合时代要求的发展道路。  相似文献   
7.
从地壳上地幔构造看大陆碰撞带岩石圈的克拉通化   总被引:1,自引:0,他引:1  
杨文采  于常青 《地质论评》2014,60(4):721-740
本篇讨论超级大陆汇聚后逐渐变为克拉通或扩大克拉通的作用过程,即指经及大陆碰撞地体汇聚后新形成的大陆块逐渐转变为刚性克拉通的作用过程。增生大陆岩石圈的克拉通化的作用后果,包括大陆地壳密度的增加,岩石圈地幔的增厚和大地热流值的下降,使大陆岩石圈逐渐刚性强化。大陆碰撞后形成的大陆块必须经过克拉通化的过程,才能逐渐成为刚性克拉通。作用过程主要包括:①上地壳沉积碎屑岩石结晶岩化和中地壳岩石角闪岩化;②下地壳岩石基性化;③大陆碰撞带下凹莫霍面的磨平;④岩石圈地幔底侵加厚形成陆根。从大陆碰撞带转变为克拉通的过程也是岩石圈地幔不断增厚而地壳缓慢变硬变冷的过程。这个过程包含以下作用:区域变质作用,交代作用和岩石圈幔源岩浆的底侵。这个过程时间尺度比碰撞造山作用大一个级次。长期的底侵作用使地壳岩石密度和强度不断加大,改变岩层的矿物成分和局部结构。当大陆岩石圈克拉通化到一定程度之后,由于下方软流圈的热能供应逐渐减缓,使岩石圈地温梯度缓慢下降,最终结果会形成大陆根。由于显生宙大陆碰撞带岩石圈强度弱,大陆碰撞时更容易造成岩石圈变形,因此大陆碰撞的板内效应主要发生在大陆内的显生宙碰撞带。显生宙大陆碰撞带如果再次受到大陆碰撞板内效应的作用,其克拉通化的过程必然会推迟。  相似文献   
8.
The research area that is in the north of Istanbul (Turkey) and it is a land of open pit coal mining residuals reclaimed and turned to forest in 1988–1989. The materials that are open pit mine spoils are formed by sandy loam, sandy clay loam, heavy loam and clay (noncalcareous Pliocene I sediments). Pseudoacacia (Robinia pseudoacacia), Maritima Pine (Pinus pinaster) and Stone Pine (Pinus pinea) are planted on these materials. The aims of this research were to determine the strength of the material provided by tree roots and evaluate the performance of the forestation practices at lands especially where open pit coal mining spoil (residual) materials piled up. The research has been performed at two stages. The first one was hydro-mechanical effect concerned about material moisture depletion as a result of transpiration and the second one was bio-mechanical effects due to strength parameters of the roots and their growth pattern within the material. All results were evaluated in relation to tensile strength and displacement curves due to pre and post failure behaviors of materials and root systems. The results showed the increase of the displacement of the material was the significant indicator of the bio-mechanics tensile strength of the material provided by the tree roots. The fast growing type of tree roots have stabilized the material up to a depth for 80–100 cm by covering the coal residual materials within 12 years.  相似文献   
9.
应用埋袋法对毛乌素沙地天然分布的优势种臭柏、油蒿细根分解进行研究。对两年的实验数据进行分析,结果显示,臭柏、油蒿细根分解过程中C、P、K、Mg均表现为释放,释放率油蒿>臭柏,元素重量损失率K>P>C>Mg;N在臭柏分解中表现为积累,在油蒿分解中表现为释放;Ca在臭柏、油蒿细根分解中都表现为积累的趋势,积累率为油蒿>臭柏;能量在臭柏、油蒿细根分解过程中表现为释放。该研究为沙区土壤库中的能量转化和流动过程提供了理论依据。  相似文献   
10.
植物根系对土体抗剪强度影响的研究   总被引:2,自引:0,他引:2  
通过室内直剪实验分析了不同含水率下有根和无根的扰动砾砂土体的抗剪性能。得出:在相同含水率下,有根土体相对于无根土体其内聚力较小,内摩擦角较大;有根土体的抗剪强度随含水率的增大而减小。最后为其在工程中的应用提出了一些建议,可为植物根系护坡技术的应用提供一定的借鉴意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号