首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   1篇
海洋学   1篇
  1999年   1篇
  1983年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Samples of anoxic intertidal sediments from the Mersey Estuary, north-west England, have been used in laboratory experiments to determine the rates and extents of metal (Cu, Zn, Fe, Mn) releases to solution under conditions of controlled resuspension and reoxidation. An experimental system for the study of sediment-water interactions at various temperatures, salinities, pHs and oxygen concentrations is described. The results indicate rapid initial losses of Fe and Mn from sediment but not Cu and Zn with longer term readsorption of Fe and Mn to give partitioning between the aqueous/ sediment phases for all four metals which is similar to that under the initial anoxic conditions. Cu and Zn show small, but measurable, net losses from the aqueous phase to the reoxidized sediment. Salinity variations exert little influence on the processes observed, but increasing temperature produces increased Cu, Zn and Mn in the dissolved fraction at equilibrium conditions. Exchanges of Cu and Zn between the sediment/water phases are rather insensitive to pH or oxygen concentration, but Fe and Mn do respond to increasing pH which suppresses their initial release on oxidation. Low oxygen concentrations can result in a slow but significant release of Fe. In relation to trace metal pollution in estuaries and biological availability, the results suggest that the resuspension and oxidation of polluted anoxic sediments is not an important process because of scavenging of soluble metals on to the resuspended material.  相似文献   
2.
Data on abundance and isotopic composition of porewater and sedimentary sulfur species are reported for relatively uncontaminated and highly contaminated fine-grained anoxic sediments of St. Andrew Bay, Florida. A strong contrast in amount and composition of sedimentary organic matter at the two sites allows a comparative study of the historical effects of increased organic loading on sulfur cycling and sulfur isotopic fractionation. In the contaminated sediments, an increase in organic loading caused increased sedimentary carbon/sulfur ratios and resulted in higher rates of bacterial sulfate reduction, but a lower efficiency of sulfide oxidation. These differences are well reflected in the isotopic composition of dissolved sulfate, sulfide, and sedimentary pyrite. Concentration and isotopic profiles of dissolved sulfate, organic carbon, and total sulfur suggest that the anaerobic decomposition of organic matter is most active in the upper 8cm but proceeds at very slow rates below this depth. The rapid formation of more than 90% of pyrite in the uppermost 2 cm which corresponds to about 3 years of sediment deposition allows the use of pyrite isotopic composition for tracing changing diagenetic conditions. Sediment profiles of the sulfur isotopic composition of pyrite reflect present-day higher rates of bacterial sulfate reduction and lower rates of sulfide oxidation, and record a profound change in the diagenetic cycling of sulfur in the contaminated sediments coincident with urban and industrial development of the St. Andrew Bay area.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号