首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
海洋学   4篇
  2022年   1篇
  2011年   1篇
  2003年   1篇
  1993年   1篇
排序方式: 共有4条查询结果,搜索用时 6 毫秒
1
1.
The mesopelagic communities are important for food web and carbon pump in ocean, but the large-scale studies of them are still limited until now because of the difficulties on sampling and analyzing of mesopelagic organisms. Mesopelagic organisms, especially micronekton, can form acoustic deep scattering layers (DSLs) and DSLs are widely observed. To explore the spatial patterns of DSLs and their possible influencing factors, the DSLs during daytime (10:00–14:00) were investigated in the subtropical northwestern Pacific Ocean (13°–23.5°N, 153°–163°E) using a shipboard acoustic Doppler current profiler at 38 kHz. The study area was divided into three parts using k-means cluster analysis: the northern part (NP, 22°–24°N), the central part (CP, 17°–22°N), and the southern part (SP, 12°–17°N). The characteristics of DSLs varied widely with latitudinal gradient. Deepest core DSLs (523.5 m±17.4 m), largest nautical area scattering coefficient (NASC) (130.8 m2/n mile2±41.0 m2/n mile2), and most concentrated DSLs (mesopelagic organisms gathering level, 6.7%±0.7%) were observed in NP. The proportion of migration was also stronger in NP (39.7%) than those in other parts (18.6% in CP and 21.5% in SP) for mesopelagic organisms. The latitudinal variation of DSLs was probably caused by changes in oxygen concentration and light intensity of mesopelagic zones. A positive relationship between NASC and primary productivity was identified. A four-months lag was seemed to exist. This study provides the first basin-scale baselines information of mesopelagic communities in the northwest Pacific with acoustic approach. Further researches are suggested to gain understandings of seasonal and annual variations of DSLs in the region.  相似文献   
2.
3.
Micronekton abundance, biomass, and community composition was determined from 58 Cobb trawl samples taken from 2005 to 2008 at several locations in the lee of the Hawaiian Islands. The results indicated a strong influence of the lunar illumination on micronekton abundance and biomass. This effect was evident in shallow night tows and probably was the result of lunar light affecting the nighttime depths of migrating species. The abundance and biomass of micronekton is remarkably consistent between years and areas in Hawaiian waters after the affects of moon phase are accounted for. Micronekton, principally migratory myctophids, were reduced over the summit of Cross Seamount but not Finch Seamount that has a summit below the daytime depth of most migrators. However, during a new moon, micronekton abundance over Cross seamount was similar to surrounding areas either because of altered migration patterns or because predators such as tunas cannot forage as effectively at night without lunar illumination. Species belonging to the Hawaiian mesopelagic boundary layer community were found to vary in presence and abundance between years at Cross Seamount suggesting that a consistent seamount associated fauna does not exist. Sparse sampling of a cyclonic mid-ocean eddy suggested very high micronekton abundance and biomass both in shallow waters at night but also at depth during the day. Although preliminary, these results suggest that eddies may aggregate the micronekton which probably feed on the enhanced secondary productivity.  相似文献   
4.
The epipelagic and mesopelagic nekton communities of the northern California Current have been sampled somewhat continuously over the last four decades with bottom and pelagic trawls, small midwater trawls, and purse seines. We review the zoogeography and community and environmental associations of the dominant pelagic micronekton and nekton species in this region with a view to understanding their role in this dynamic marine ecosystem. As is typical of many upwelling eastern boundary current regions, the pelagic biomass is dominated by a few species that fluctuate dramatically through time. The abundance trends of pelagic nekton caught in this region demonstrated large-scale ecosystem changes about the time of the regime shifts of 1976/77 and 1989 and possibly another beginning in 1999. The rapidity of the changes in composition indicates that the response was due to a change in migration or distribution patterns as opposed to recruitment patterns. The 1989 regime shift led to a dramatic increase in sardine and a decrease in anchovy populations. The most pronounced interannual signals were attributed to strong El Niño/Southern Oscillation (ENSO) conditions in 1983 and 1998 that altered the latitudinal ranges and proximity to the coast of many pelagic species. Variations in abundance and cross-shelf distribution patterns were noted for both pelegic nekton and micronektonic from surveys off California, Oregon, and Washington.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号