首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   462篇
  免费   133篇
  国内免费   75篇
测绘学   67篇
大气科学   68篇
地球物理   248篇
地质学   117篇
海洋学   90篇
天文学   7篇
综合类   35篇
自然地理   38篇
  2024年   4篇
  2023年   8篇
  2022年   23篇
  2021年   21篇
  2020年   20篇
  2019年   35篇
  2018年   34篇
  2017年   25篇
  2016年   34篇
  2015年   32篇
  2014年   33篇
  2013年   38篇
  2012年   30篇
  2011年   30篇
  2010年   22篇
  2009年   34篇
  2008年   36篇
  2007年   37篇
  2006年   24篇
  2005年   20篇
  2004年   26篇
  2003年   18篇
  2002年   17篇
  2001年   12篇
  2000年   7篇
  1999年   11篇
  1998年   9篇
  1997年   8篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1986年   3篇
排序方式: 共有670条查询结果,搜索用时 9 毫秒
1.
Nowadays there are some chronic serious environmental problems, such as eutrophication, blue tide and so on, in a complicated coastal zone or a semi-enclosed bay, because the water exchanges between an inner bay and an outer sea is weak compared with the supply of contaminant. Under this situation, a method to improve the water quality by 3-dimensional small unsymmetrical structures has been proposed by Komatsu et al. In this paper, several numerical simulations of the tidal current and concentration for various arrangements of bottom roughness in a semi-enclosed model bay are carfled out with a depth-averaged 2-D numerical model. The model is solved by the hybrid finite analytic method with nonstaggered grid. And the SIMPLES algorithm with Rhie and Chow' s momentum interpolation technique is used for the simulation. The effect of Komatsu' s method for water purification is examined by numerical simulation. The result of numerical experiment indicates that it is possible to generate a new tidal residual current and to activate a tidal exchange by bottom roughness arrangement only.  相似文献   
2.
The modified hybrid element method (MHEM) is utilized to predict and analyze wave forces on arbitrarily shaped multiple bodies. This method can be applied to waves of all water depths, i. e. shallow, intermediate, and deep waters, on slowly varying seabed. The MHEM employs the ICCG method to save CPU and storage, thus the computation of wave forces for large multi-body systems can be carried out on microcomputers. Numerical results of the present method are compared with experimental data and other solutions. It is shown that the MHEM provides more accurate solutions of the wave forces than other numerical methods do. Therefore, the methodology presented herein can be used in the design of coastal and ocean structures.  相似文献   
3.
Abstract

With the large-scale development and utilization of ocean resources and space, it is inevitable to encounter existing submarine facilities in pile driving areas, which necessitates a safety assessment. In this article, by referring to a wharf renovation project as a reference, the surrounding soil response and buried pipe deformation during pile driving in a near-shore submarine environment are investigated by three-dimensional (3D) numerical models that consider the pore water effect. Numerical studies are carried out in two different series: one is a case of a single pile focusing on the effect of the minimum plane distance of the pile–pipe, and the other is a case of double piles focusing on the effect of the pile spacing.  相似文献   
4.
Any calculation of seismic wave propagation comprising the seismic source, the travel path, and the receiver site in a single finite-difference (FD) model requires a considerable amount of computer time and memory. Moreover, the methods currently available for including point sources in the 2D FD calculations are far-field approximations only. Therefore we have developed a new hybrid method for treating the seismic wave fields at localized 2D near-surface structures embedded in a 1D background medium, and excited by a point source. The source radiation and propagation in the background model is solved by the discrete-wave number (DW) method, while the propagation in the local 2D structure is calculated by the FD method. The coupling between the two sets of calculations is performed on a rectangular excitation box surrounding the local structure. We show the usefulness of the method in ground-motion studies where both near-field source effects and local site effects are important. Technical problems connected with the inconsistency between the 3D source radiation and the 2D FD calculation are minor for the relatively distant in-plane point explosive sources, but are more serious for the in-plane dislocation sources.  相似文献   
5.
Structural vibration control using active or passive control strategy is a viable technology for enhancing structural functionality and safety against natural hazards such as strong earthquakes and high wind gusts. Both the active and passive control systems have their limitations. The passive control system has limited capability to control the structural response whereas the active control system depends on external power. The power requirement for active control of civil engineering structures is usually quite high. Thus, a hybrid control system is a viable solution to alleviate some of the limitations. In this paper a multi‐objective optimal design of a hybrid control system for seismically excited building structures has been proposed. A tuned mass damper (TMD) and an active mass driver (AMD) have been used as the passive and active control components of the hybrid control system, respectively. A fuzzy logic controller (FLC) has been used to drive the AMD as the FLC has inherent robustness and ability to handle the non‐linearities and uncertainties. The genetic algorithm has been used for the optimization of the control system. Peak acceleration and displacement responses non‐dimensionalized with respect to the uncontrolled peak acceleration and displacement responses, respectively, have been used as the two objectives of the multi‐objective optimization problem. The proposed design approach for an optimum hybrid mass damper (HMD) system, driven by FLC has been demonstrated with the help of a numerical example. It is shown that the optimum values of the design parameters of the hybrid control system can be determined without specifying the modes to be controlled. The proposed FLC driven HMD has been found to be very effective for vibration control of seismically excited buildings in comparison with the available results for the same example structure but with a different optimal absorber. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
6.
Use of GIS layers, in which the cell values represent fuzzy membership variables, is an effective method of combining subjective geological knowledge with empirical data in a neural network approach to mineral-prospectivity mapping. In this study, multilayer perceptron (MLP), neural networks are used to combine up to 17 regional exploration variables to predict the potential for orogenic gold deposits in the form of prospectivity maps in the Archean Kalgoorlie Terrane of Western Australia. Two types of fuzzy membership layers are used. In the first type of layer, the statistical relationships between known gold deposits and variables in the GIS thematic layer are used to determine fuzzy membership values. For example, GIS layers depicting solid geology and rock-type combinations of categorical data at the nearest lithological boundary for each cell are converted to fuzzy membership layers representing favorable lithologies and favorable lithological boundaries, respectively. This type of fuzzy-membership input is a useful alternative to the 1-of-N coding used for categorical inputs, particularly if there are a large number of classes. Rheological contrast at lithological boundaries is modeled using a second type of fuzzy membership layer, in which the assignment of fuzzy membership value, although based on geological field data, is subjective. The methods used here could be applied to a large range of subjective data (e.g., favorability of tectonic environment, host stratigraphy, or reactivation along major faults) currently used in regional exploration programs, but which normally would not be included as inputs in an empirical neural network approach.  相似文献   
7.
ABSTRACT. Investigations of dooryard gardens, kitchen gardens, home gardens, and houselot gardens fall unequally into one of three groupings. The first are those that treat the plants in the gardens as biological entities and define a space considered a culturally controlled biological community or habitat. The second are those that consider plants cultural traits and the space defined by their positions a setting for household activities. The third conceives of plants as design elements within a garden or a landscape that frames a house or provides a setting for formal human performances. Recent decades have witnessed a broadening focus in the study of gardens, from spatial characteristics and biological content to social and cultural concerns such as reciprocity networks, contested spaces, and the concept of “dwelling.”  相似文献   
8.
通过对曝气系统的调节,微压流化式复合生物反应器(MP-FHBR)内可以实现好氧区和缺氧区共存,利用这一特点和MP-FHBR中同时存在的活性污泥﹑悬浮生物膜复合生物体系,进行了同步脱氮的试验研究。结果表明,MP-FHBR在好氧-缺氧条件下,实现了同步脱氮过程,TN和COD的平均去除率分别达到77.5%和98.3%。降低DO质量浓度使反应器内形成完全缺氧环境,对MP-FHBR同步脱氮效果没有显著影响,但会降低系统去除COD的效果;而提高DO质量浓度使反应器内形成完全好氧环境,MP-FHBR同步脱氮效果显著下降。在一定范围内提高进水COD/TN有利于提高MP-FHBR同步脱氮效果,COD/TN 由2升高到10,TN平均去除率由58.4%提高到78.8%,而继续提高COD/TN对系统同步脱氮效果的影响并不明显。在反应器允许的条件下,提高污泥质量浓度(MLSS)有利于提高系统反硝化脱氮效果,TN去除率随MLSS的增加而提高。  相似文献   
9.
王媛  刘杰 《岩土力学》2009,30(2):311-317
基于求解稳定渗流场与弹性位移场耦合问题的全耦合分析方法,应用提出的混合遗传算法作为优化算法,同时利用水头、位移等多类型量测资料,提出了裂隙岩体渗流与应力静态全耦合的参数反演方法。在目标函数建立中考虑了实测水头对渗流参数的敏感性,在待反演力学未知参数的选取中,依据提出的相对灵敏度概念,考虑了实测位移对力学参数的敏感性。针对某裂隙岸坡算例,研究了水库蓄水过程中位移场对力学参数敏感性,据此实现位移测点的优化布置,并以渗流场与位移场全耦合正分析计算结果作为假想实测值,进行该岩坡的全耦合参数反演分析,从而验证了所提出理论与研制程序的正确性和可行性。  相似文献   
10.
基于改进型前馈神经网络的流域产流预报模型的研究   总被引:4,自引:0,他引:4  
王栋  曹升乐 《水文》1999,(6):8-11
在分析流域产流机制、影响因素和现行产流计算方法的基础上,首次取前期影响雨量、主产流历时、全过程面平均雨量和4个代表雨强计7个因子作为神经网络输入,直接以流域产流深作为神经网络输出,并针对传统BP算法的固有缺陷,采用混合GN-BFGS算法训练网络。实例验证了所建模型及算法的有效性和可行性。还对神经网络隐层单位数等进行了初步研究。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号