首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5545篇
  免费   1358篇
  国内免费   1800篇
测绘学   34篇
大气科学   77篇
地球物理   1373篇
地质学   5707篇
海洋学   657篇
天文学   57篇
综合类   199篇
自然地理   599篇
  2024年   53篇
  2023年   141篇
  2022年   199篇
  2021年   247篇
  2020年   261篇
  2019年   295篇
  2018年   264篇
  2017年   308篇
  2016年   301篇
  2015年   349篇
  2014年   368篇
  2013年   420篇
  2012年   380篇
  2011年   362篇
  2010年   333篇
  2009年   359篇
  2008年   331篇
  2007年   425篇
  2006年   348篇
  2005年   256篇
  2004年   343篇
  2003年   254篇
  2002年   234篇
  2001年   269篇
  2000年   274篇
  1999年   184篇
  1998年   210篇
  1997年   149篇
  1996年   160篇
  1995年   141篇
  1994年   113篇
  1993年   80篇
  1992年   74篇
  1991年   48篇
  1990年   19篇
  1989年   40篇
  1988年   29篇
  1987年   20篇
  1986年   17篇
  1985年   12篇
  1984年   12篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1971年   2篇
  1954年   3篇
排序方式: 共有8703条查询结果,搜索用时 15 毫秒
1.
A dry (1979–1980) and a wet (1980–1981) season had a marked effect on the freshwater inflow into the Keiskamma estuary. Under low inflow conditions, which results in elevated salinities in the upper reaches, an upstream migration of adult Macrobrachium petersi (Hilgendorf) to freshwater takes place. During periods of increased river inflow adult M. petersi move downstream to the more saline reaches of the estuary. These two migratory responses have been interpreted as (a) a breeding migration under high inflow conditions which ensures that larvae are in close proximity to salinities that favour growth and development, and (b) an adult upstream migration back to freshwater to escape elevated estuarine salinities as a result of the low freshwater inflow.  相似文献   
2.
Abstract Large calcite veins and pods in the Proterozoic Corella Formation of the Mount Isa Inlier provide evidence for kilometre-scale fluid transport during amphibolite facies metamorphism. These 10- to 100-m-scale podiform veins and their surrounding alteration zones have similar oxygen and carbon isotopic ratios throughout the 200 × 10-km Mary Kathleen Fold Belt, despite the isotopic heterogeneity of the surrounding wallrocks. The fluids that formed the pods and veins were not in isotopic equilibrium with the immediately adjacent rocks. The pods have δ13Ccalcite values of –2 to –7% and δ18Ocalcite values of 10.5 to 12.5%. Away from the pods, metadolerite wallrocks have δ18Owhole-rock values of 3.5 to 7%. and unaltered banded calc-silicate and marble wallrocks have δ13Ccalcite of –1.6 to –0.6%, and δ18Ocalcite of 18 to 21%. In the alteration zones adjacent to the pods, the δ18O values of both metadolerite and calc-silicate rocks approach those of the pods. Large calcite pods hosted entirely in calc-silicates show little difference in isotopic composition from pods hosted entirely in metadolerite. Thus, 100- to 500-m-scale isotopic exchange with the surrounding metadolerites and calc-silicates does not explain the observation that the δ18O values of the pods are intermediate between these two rock types. Pods hosted in felsic metavolcanics and metasiltstones are also isotopically indistinguishable from those hosted in the dominant metadolerites and calc-silicates. These data suggest the veins are the product of infiltration of isotopically homogeneous fluids that were not derived from within the Corella Formation at the presently exposed crustal level, although some of the spread in the data may be due to a relatively small contribution from devolatilization reactions in the calc-silicates, or thermal fluctuations attending deformation and metamorphism. The overall L-shaped trend of the data on plots of δ13C vs. δ18O is most consistent with mixing of large volumes of externally derived fluids with small volumes of locally derived fluid produced by devolatilization of calc-silicate rocks. Localization of the vein systems in dilatant sites around metadolerite/calc-silicate boundaries indicates a strong structural control on fluid flow, and the stable isotope data suggest fluid migration must have occurred at scales greater than at least 1 km. The ultimate source for the external fluid is uncertain, but is probably fluid released from crystallizing melts derived from the lower crust or upper mantle. Intrusion of magmas below the exposed crustal level would also explain the high geothermal gradient calculated for the regional metamorphism.  相似文献   
3.
Abstract In the Twin Lakes area, central Sierra Nevada, California, most contact metamorphosed marbles contain calcite + dolomite + forsterite ± diopside ± phlogopite ± tremolite, and most calc-silicate hornfelses contain calcite + diopside + wollastonite + quartz ± anorthite ± K-feldspar ± grossular ± titanite. Mineral-fluid equilibria involving calcite + dolomite + tremolite + diopside + forsterite in two marble samples and wollastonite + anorthite + quartz + grossular in three hornfels samples record P± 3 kbar and T± 630° C. Various isobaric univariant assemblages record CO2-H2O fluid compositions of χCO2= 0.61–0.74 in the marbles and χCO2= 0.11 in the hornfelses. Assuming a siliceous dolomitic limestone protolith consisting of dolomite + quartz ° Calcite ± K-feldspar ± muscovite ± rutile, all plausible prograde reaction pathways were deduced for marble and hornfels on isobaric T-XCO2 diagrams in the model system K2O-CaO-MgO-Al2O3-SiO2-H2O-CO2. Progress of the prograde reactions was estimated from measured modes and mass-balance calculations. Time-integrated fluxes of reactive fluid which infiltrated samples were computed for a temperature gradient of 150 °C/km along the fluid flow path, calculated fluid compositions, and estimated reaction progress using the mass-continuity equation. Marbles and hornfelses record values in the range 0.1–3.6 × 104 cm3/cm2 and 4.8–12.9 × 104 cm3/cm2, respectively. For an estimated duration of metamorphism of 105 years, average in situ metamorphic rock permeabilities, calculated from Darcy's Law, are 0.1–8 × 10?6 D in the marbles and 10–27 × 10?6 D in the hornfelses. Reactive metamorphic fluids flowed up-temperature, and were preferentially channellized in hornfelses relative to the marbles. These results appear to give a general characterization of hydrothermal activity during contact metamorphism of small pendants and screens (dimensions ± 1 km or less) associated with emplacement of the Sierra Nevada batholith.  相似文献   
4.
《地震地质》1994,16(2):127
对全球尺度的6条大地震带内1900~1990年中184次Ms≥73/4级地震进行了沿地震带方向定向迁移的分析,获得了全球统一的地震定向迁移规律,总体是由西向东,迁移速度由700km/a变为150km/a,此现象可以作多种暂态地球动力作用过程的推论,如以大西洋脊间歇式张裂引起上地幔软流物质自西向东运动,呈现纵波式的振荡传播;也可解释为非洲板块、阿拉伯板块和印度板块自西南向东北对欧亚地震带依次的推压引起向东的应变波的传播;太平洋脊两侧洋底板块向西北和东北两侧的斜向推压,可能是造成两侧地震带地震向北迁移的触发源  相似文献   
5.
6.
The spatial size distribution of grunts and snappers have previously indicated the separation of juveniles in nursery habitats from the adults on the coral reef. This implies life cycle migrations from nursery habitats (such as seagrass beds and mangroves) to the coral reef. If diet shifts are related to such migrations, then the diets of these fish must change before or around the fish size at which such migrations take place. A wide size range of juveniles of two grunt species (Haemulon sciurus and Haemulon flavolineatum) and of two snapper species (Lutjanus apodus and Ocyurus chrysurus) were caught in seagrass beds and mangroves, and their gut contents identified and quantified. Regression analysis between fish size and dietary importance of small crustaceans showed a negative relationship in all four species. Positive relations were found for H. sciurus, L. apodus and O. chrysurus between fish length and the dietary importance of decapods, and for L. apodusand O. chrysurus between fish length and prey fish importance. Critical changes in the fish diets with fish size were examined by application of a Canonical Correspondence Analysis (CCA). The CCA yielded three clusters of size-classes of fishes with similar diets, and application of a Mantel test showed that each of these clusters had significantly different diets, and that each cluster diet was significantly specialised. The size at which a fish species ‘switched’ from one cluster to another was compared with size-at-maturity data and with the typical size at which these species migrate from the nursery habitats to the coral reef. H. sciurus and H. flavolineatum may be prompted to migrate from the nursery habitats to coral reef habitats because of dietary changes, or because of the development of the gonads. For L. apodus and O. chrysurus, a dietary changeover forms a more likely explanation for nursery-to-reef migrations than does sexual maturation because these species reach maturity at sizes much larger than the maximum size of individuals found in nursery habitats. Although other factors may theoretically initiate or promote the migration patterns, the results of this study indicate that ontogenetic dietary changes may crucially influence the nursery-to-coral reef migrations of these reef fish species.  相似文献   
7.
8.
9.
This paper reviews the data concerning the fracture network and the hydraulic characteristics of faults in an active zone of the Gulf of Corinth. Pressure gap measured through fault planes shows that in this area the active normal faults (Aigion, Helike) act, at least temporarily and locally, as transversal seal. The analysis of the carbonate cements in the fractures on both the hangingwall and the footwall of the faults also suggests that they have acted as local seals during the whole fault zone evolution. However, the pressure and the characteristics of the water samples measured in the wells indicate that meteoric water circulates from the highest part of the relief to the coast, which means it goes through the fault zones. Field quantitative analysis and core studies from the AIG-10 well have been performed to define both regional and fault-related fracture networks. Then laboratory thin section observations have been done to recognize the different fault rocks characterizing the fault zone components. These two kinds of approach give information on the permeability characteristics of the fault zone. To synthesize the data, a schematic conceptual 3D fluid flow modeling has been performed taking into account fault zone permeability architecture, sedimentation, fluid flow, fault vertical offset and meteoric water influx, as well as compaction water flow. This modeling allows us to fit all the data with a model where the fault segments act as a seal whereas the relays between these segments allow for the regional flow from the Peloponnese topographic highs to the coast.  相似文献   
10.
The Walter‐Outalpa shear zone in the southern Curnamona Province of NE South Australia is an example of a shear zone that has undergone intensely focused fluid flow and alteration at mid‐crustal depths. Results from this study have demonstrated that the intense deformation and ductile shear zone reactivation, at amphibolite facies conditions of 534 ± 20 °C and 500 ± 82 MPa, that overprint the Proterozoic Willyama Supergroup occurred during the Delamerian Orogeny (c. 500 Ma) (EPMA monazite ages of 501 ± 16 and 491 ± 19 Ma). This is in contrast to the general belief that the majority of basement deformation and alteration in the southern Curnamona Province occurred during the waning stages of the Olarian Orogeny (c. 1610–1580 Ma). These shear zones contain hydrous mineral assemblages that cut wall rocks that have experienced amphibolite facies metamorphism during the Olarian Orogeny. The shear zone rock volumes have much lower δ18O values (as low as 1‰) than their unsheared counterparts (7–9‰), and calculated fluid δ18O values (5–8‰) consistent with a surface‐derived fluid source. Hydrous minerals show a decrease in δD(H2O) from ?14 to ?22‰, for minerals outside the shear zones, to ?28 to ?40‰, for minerals within the shear zones consistent with a contribution from a meteoric source. It is unclear how near‐surface fluids initially under hydrostatic pressure penetrate into the middle crust where fluid pressures approach lithostatic, and where fluid flow is expected to be dominantly upward because of pressure gradients. We propose a mechanism whereby faulting during basin formation associated with the Adelaidean Rift Complex (c. 700 Ma) created broad hydrous zones containing mineral assemblages in equilibrium with surface waters. These panels of fault rock were subsequently buried to depths where the onset of metamorphism begins to dehydrate the fault rock volumes evolving a low δ18O fluid that is channelled through shear zones related to Delamerian Orogenic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号