首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   5篇
  国内免费   28篇
测绘学   24篇
大气科学   7篇
地球物理   26篇
地质学   18篇
海洋学   82篇
天文学   6篇
综合类   5篇
自然地理   3篇
  2021年   2篇
  2020年   5篇
  2019年   8篇
  2018年   4篇
  2017年   7篇
  2016年   4篇
  2015年   8篇
  2014年   7篇
  2013年   9篇
  2012年   9篇
  2011年   5篇
  2010年   7篇
  2009年   11篇
  2008年   8篇
  2007年   12篇
  2006年   11篇
  2005年   3篇
  2004年   4篇
  2003年   14篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   1篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1989年   1篇
  1980年   1篇
排序方式: 共有171条查询结果,搜索用时 31 毫秒
1.
A numerical scheme is developed in order to simulate fluid flow in three dimensional (3‐D) microstructures. The governing equations for steady incompressible flow are solved using the semi‐implicit method for pressure‐linked equations (SIMPLE) finite difference scheme within a non‐staggered grid system that represents the 3‐D microstructure. This system allows solving the governing equations using only one computational cell. The numerical scheme is verified through simulating fluid flow in idealized 3‐D microstructures with known closed form solutions for permeability. The numerical factors affecting the solution in terms of convergence and accuracy are also discussed. These factors include the resolution of the analysed microstructure and the truncation criterion. Fluid flow in 2‐D X‐ray computed tomography (CT) images of real porous media microstructure is also simulated using this numerical model. These real microstructures include field cores of asphalt mixes, laboratory linear kneading compactor (LKC) specimens, and laboratory Superpave gyratory compactor (SGC) specimens. The numerical results for the permeability of the real microstructures are compared with the results from closed form solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
2.
A coupled continuum‐discrete hydromechanical model was employed to analyse the liquefaction of a saturated loose deposit of cohesionless particles when subjected to a dynamic base excitation. The pore fluid flow was idealized using averaged Navier–Stokes equations and the discrete element method was employed to model the solid phase particles. A well established semi‐empirical relationship was utilized to quantify the fluid–particle interactions. The conducted simulations revealed a number of salient micro‐mechanical mechanisms and response patterns associated with the deposit liquefaction. Space and time variation of porosity was a major factor which affected the coupled response of the solid and fluid phases. Pore fluid flow was within Darcy's regime. The predicted response exhibited macroscopic patterns consistent with experimental results and case histories of the liquefaction of granular soil deposits. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
3.
The spectral properties of nonlinear drag forces of random waves on vertical circular cylinders are analyzed in this paper by means of nonlinear spectral analysis. The analysis provides basic parameters for estimation of the characteristic drag forces. Numerical computation is also performed for the investigation of the effects of nonlinearity of the drag forces.The results indicate that the wave drag forces calculated by linear wave theory are larger than those calculated by the third order Stokes wave theory for given waves. The difference between them increases with wave height. The wave drag forces calculated by use of hnear approximation are about 5% smaller than their actual values when measured in the peak values of spectral densities. This will result in a safety problem for the design of offshore structures. Therefore, the nonlinear effect of wave drag forces should be taken into comidemtion in design and application of important offshore structures.  相似文献   
4.
A finite-difference scheme and a modified marker-and-cell (MAC) algorithm have been developed to investigate the interactions of fully nonlinear waves with two- or three-dimensional structures of arbitrary shape. The Navier–Stokes (NS) and continuity equations are solved in the computational domain and the boundary values are updated at each time step by the finite-difference time-marching scheme in the framework of a rectangular coordinate system. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique developed for two fluid layers.To demonstrate the capability and accuracy of the present method, the numerical simulation of backstep flows with free-surface, and the numerical tests of the MDF technique with limit functions are conducted. The 3D program was then applied to nonlinear wave interactions with conical gravity platforms of circular and octagonal cross-sections. The numerical prediction of maximum wave run-up on arctic structures is compared with the prediction of the Shore Protection Manual (SPM) method and those of linear and second-order diffraction analyses based on potential theory and boundary element method (BEM). Through this comparison, the effects of non-linearity and viscosity on wave loading and run-up are discussed.  相似文献   
5.
The stochastic properties of the drag force maxima on a circular cylinder subjected to nonlinear random waves are investigated. Unseparated laminar high Reynolds number flow is considered. A simplified approach based on second order Stokes waves is presented, including the sum-frequency effect only. It is demonstrated how a drag force formula valid for regular linear waves can be used to find the cumulative distribution function of individual drag force maxima for nonlinear irregular waves. Here the [Wang, 1968] drag force coefficient is used.  相似文献   
6.
Hydrocyclones are widely used in the mining and chemical industries. An attempt has been made in this study, to develop a CFD (computational fluid dynamics) model, which is capable of predicting the flow patterns inside the hydrocyclone, including accurate prediction of flow split as well as the size of the air-core. The flow velocities and air-core diameters are predicted by DRSM (differential Reynolds stress model) and LES (large eddy simulations) models were compared to experimental results. The predicted water splits and air-core diameter with LES and RSM turbulence models along with VOF (volume of fluid) model for the air phase, through the outlets for various inlet pressures were also analyzed. The LES turbulence model led to an improved turbulence field prediction and thereby to more accurate prediction of pressure and velocity fields. This improvement was distinctive for the axial profile of pressure, indicating that air-core development is principally a transport effect rather than a pressure effect.  相似文献   
7.
Ice and snow have often helped physicists understand the world. On the contrary it has taken them a very long time to understand the flow of the glaciers. Naturalists only began to take an interest in glaciers at the beginning of the 19th century during the last phase of glacier advances. When the glacier flow from the upslope direction became obvious, it was then necessary to understand how it flowed. It was only in 1840, the year of the Antarctica ice sheet discovery by Dumont d'Urville, that two books laid the basis for the future field of glaciology: one by Agassiz on the ice age and glaciers, the other one by canon Rendu on glacier theory. During the 19th century, ice flow theories, adopted by most of the leading scientists, were based on melting/refreezing processes. Even though the word ‘fluid’ was first used in 1773 to describe ice, more the 130 years would have to go by before the laws of fluid mechanics were applied to ice. Even now, the parameter of Glen's law, which is used by glaciologists to model ice deformation, can take a very wide range of values, so that no unique ice flow law has yet been defined. To cite this article: F. Rémy, L. Testut, C. R. Geoscience 338 (2006).  相似文献   
8.
Recent technological advances in current measuring devices has resulted in a large observational database related to wind-driven motions in the upper ocean mixed layer. This has served to highlight the fact that transient motions make up a substantial contribution of the resulting Ekman currents. At the same time, certain discrepancies have emerged between the observed angular deflections of the steady-state currents from the surface wind stress, both at the surface and at sub-surface depths, which cannot be reconciled using the classical Ekman model. This paper seeks to tackle these two issues.First a general analytical method is presented for solving the time dependent horizontal momentum Ekman equations. Analysis of the unsteady terms that arise from simple special cases shows how the evolution proceeds through three stages. At early times, the Coriolis acceleration is insignificant, and the current is unidirectional and deepens through downward diffusion of momentum. Later Coriolis acceleration deflects the current vectors in the upper layers, whilst downward diffusion of momentum continues to deepen the layer. Finally, once diffusion has penetrated down to the depth of the steady-state current, then the transients decay on the inertial or diffusive timescale, depending upon the boundary conditions of the particular problem.In the second half of the paper, a new steady-state model is developed that includes the effects of wind-generated waves, through the action of their Stokes drift on the planetary vorticity. Comparisons between observations and the theoretical predictions, demonstrate that inclusion of the Stokes drift is the key to reconciling the discrepancies in the angular deflections of the steady-state currents. This leads to the conclusion that Ekman layer currents are significantly influenced by the surface waves.  相似文献   
9.
10.
Achieving a reliable and accurate numerical prediction of the self-propulsion performance of a ship is still an open problem that poses some relevant issues. Several CFD methods, ranging from boundary element methods (BEM) to higher-fidelity viscous Reynolds averaged Navier–Stokes (RANS) based solvers, can be used to accurately analyze the separate problems, i.e. the open water propeller and the hull calm water resistance. However, when the fully-coupled self-propulsion problem is considered, i.e. the hull advancing at uniform speed propelled by its own propulsion system, several complexities rise up. Typical flow simplifications adopted to speed-up the simulations of the single analysis (hull and propeller separately) lose their validity requiring a more complex solver to tackle the fully-coupled problem. The complexity rises up further when considering a maneuver condition. This aspect increases the computational burden and, consequently, the required time which becomes prohibitive in a preliminary ship design stage.The majority of the simplified methods proposed in literature to include propeller effects, without directly solve the propeller flow, in a high-fidelity viscous solver are not able to provide all the commonly required self-propulsion coefficients. In this work, a new method to enrich the results from a body force based approach is proposed and investigated, with the aim to reduce as much as possible the computational burden without losing any useful result. This procedure is tested for validation on the KCS hull form in self-propulsion and maneuver conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号