首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   1篇
海洋学   2篇
  2006年   1篇
  1995年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Recent electrochemical measurements have shown that iron (Fe) speciation in seawater is dominated by complexation with strong organic ligands throughout the water column and have provided important thermodynamic information about these compounds. Independent work has shown that iron exists in both soluble and colloidal fractions in the Atlantic Ocean. Here we have combined these approaches in samples collected from a variety of regimes within the Atlantic Ocean. We measured the partitioning of Fe between soluble (< 0.02 μm) and colloidal (0.02 to 0.4 μm) size classes and characterized the concentrations and conditional stability constants of Fe ligands within these size classes. Results suggest that equilibrium partitioning of Fe between soluble and colloidal ligands is partially responsible for the distribution of Fe between soluble and colloidal size classes. However, a significant fraction of the colloidal Fe was inert to ligand exchange as soluble Fe concentrations were generally lower than values predicted by a simple equilibrium partitioning model.In surface waters, strong ligands with conditional stability constants of 1013 relative to total inorganic Fe appeared to dominate speciation in both the soluble and colloidal fractions. In deep waters these ligands were absent, and instead we found ligands with stability constants 12–15 fold smaller that were predominantly in the soluble pool. Nevertheless, significant levels of colloidal Fe were found in these samples, which we inferred must be inert to coordination exchange.  相似文献   
2.
海洋浮游生物氮吸收动力学及其粒级特征   总被引:7,自引:3,他引:7  
焦念志 《海洋与湖沼》1995,26(2):191-198
于1991年秋-1992年夏在中国科学院生态网络站之一的胶州湾进行了4个季节的现场实验,运用^15N同位素示踪方法研究胶州湾浮游生物群落对两种主要源铵态氮和硝态氮的吸收动力学及其粒级特征。研究初步阐明自然浮游生物落在不同季节,对不同氮源的吸收特性和受控机制,首次在群落水平上给出不同粒级浮游生物氮吸收特征的定量描述,从而为新生产力研究,生态系能流分配和生源要素生物地化循环研究提供重要参数。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号