首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   1篇
地质学   4篇
海洋学   1篇
综合类   1篇
  2014年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  1996年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The dynamics and thermodynamics of large ash flows   总被引:6,自引:6,他引:0  
 Ash flow deposits, containing up to 1000 km3 of material, have been produced by some of the largest volcanic eruptions known. Ash flows propagate several tens of kilometres from their source vents, produce extensive blankets of ash and are able to surmount topographic barriers hundreds of metres high. We present and test a new model of the motion of such flows as they propagate over a near horizontal surface from a collapsing fountain above a volcanic vent. The model predicts that for a given eruption rate, either a slow (10–100 m/s) and deep (1000–3000 m) subcritical flow or a fast (100–200 m/s) and shallow (500–1000 m) supercritical flow may develop. Subcritical ash flows propagate with a nearly constant volume flux, whereas supercritical flows entrain air and become progressively more voluminous. The run-out distance of such ash flows is controlled largely by the mass of air mixed into the collapsing fountain, the degree of fragmentation and the associated rate of loss of material into an underlying concentrated depositional system, and the mass eruption rate. However, in supercritical flows, the continued entrainment of air exerts a further important control on the flow evolution. Model predictions show that the run-out distance decreases with the mass of air entrained into the flow. Also, the mass of ash which may ascend from the flow into a buoyant coignimbrite cloud increases as more air is entrained into the flow. As a result, supercritical ash flows typically have shorter runout distances and more ash is elutriated into the associated coignimbrite eruption columns. We also show that one-dimensional, channellized ash flows typically propagate further than their radially spreading counterparts. As a Plinian eruption proceeds, the erupted mass flux often increases, leading to column collapse and the formation of pumiceous ash flows. Near the critical conditions for eruption column collapse, the flows are shed from high fountains which entrain large quantities of air per unit mass. Our model suggests that this will lead to relatively short ash flows with much of the erupted material being elutriated into the coignimbrite column. However, if the mass flux subseqently increases, then less air per unit mass is entrained into the collapsing fountain, and progressively larger flows, which propagate further from the vent, will develop. Our model is consistent with observations of a number of pyroclastic flow deposits, including the 1912 eruption of Katmai and the 1991 eruption of Pinatubo. The model suggests that many extensive flow sheets were emplaced from eruptions with mass fluxes of 109–1010 kg/s over periods of 103–105 s, and that some indicators of flow "mobility" may need to be reinterpreted. Furthermore, in accordance with observations, the model predicts that the coignimbrite eruption columns produced from such ash flows rose between 20 and 40 km. Received: 25 August 1995 / Accepted: 3 April 1996  相似文献   
2.
The frequency and extent of debris flows have increased tremendously due to the extreme weather and the Wenchuan earthquake on May 12, 2008. Previous studies focused on the debris flow from gullies damming the mountain streams. In this paper, an equation for the run-out distance of debris flow in the main river is proposed based on the dynamic equation of debris flow at different slopes given by Takahashi. By undertaking field investigations and flume experiments, a new calculation method of the volume of debris flow damming large river is obtained. Using the percolation theory and the renormalization group theory it was deduced that the large particles should comprise more than 50% for forming a stable debris flow dam. Hence, the criteria of damming large river by debris flow is presented in terms of run-out distance and grain composition which was then validated through the event of damming river by debris flow at Gaojia gully, the upper reaches of the Minjiang River, Sichuan, China, on July 3, 2011.  相似文献   
3.
Here we present results from a suite of laboratory experiments that highlight the influence of channel sinuosity on the depositional mechanics of channelized turbidity currents. We released turbidity currents into three channels in an experimental basin filled with water and monitored current properties and the evolution of topography via sedimentation. The three channels were similar in cross-sectional geometry but varied in sinuosity. Results from these experiments are used to constrain the run-up of channelized turbidity currents on the outer banks of moderate to high curvature channel bends. We find that a current is unlikely to remain contained within a channel when the kinetic energy of a flow exceeds the potential energy associated with an elevation gain equal to the channel relief; setting an effective upper limit for current velocity. Next we show that flow through bends induces a vertical mixing that redistributes suspended sediment back into the interiors of depositional turbidity currents. This mixing counteracts the natural tendency for suspended sediment concentration and grain size to stratify vertically, thereby reducing the rate at which sediment is lost from a current via deposition. Finally, the laboratory experiments suggest that turbidity currents might commonly separate from channel sidewalls along the inner banks of bends. In some cases, sedimentation rates and patterns within the resulting separation zones are sufficient to construct bar forms that are attached to the channel sidewalls and represent an important mechanism of submarine channel filling. These bar forms have inclined strata that might be mistaken for the deposits of point bars and internal levees, even though the formation mechanism and its implications to channel history are different.  相似文献   
4.
We present here a methodology implemented within a geographical information system (GIS) for hazard mapping of small volume pyroclastic density currents (PDCs). This technique is implemented as a set of macros written in Visual Basic for Applications (VBA) that run within GIS-software (i.e. ArcGIS). Based on the energy line concept, we calibrated an equation that relates the volume (V) and the mobility (ΔH/L) of single PDCs using data from Soufrière Hills volcano (Montserrat) and Arenal volcano (Costa Rica). Maximum potential run-outs can be predicted with an associated uncertainty of about 30%. Also based on the energy line concept and with data from Soufrière Hills volcano and Mt. St. Helens (USA), we were able to calibrate an equation that predicts the flow velocity as a function of the vertical distance between the energy line and the ground surface (Δh). Velocities derived in this way have an associated uncertainty of 3 m s−1. We wrote code to implement these equations and allow the automatic mapping of run-out and velocity with the inputs being (i) the height and location of the vent (ii) the flow volume and (iii) a digital elevation model (DEM) of the volcano. Dynamic pressure can also be estimated and mapped by incorporating the density of the pyroclastic density current (PDC). This computer application allows the incorporation of uncertainties in the location of the vent and of statistical uncertainties expressed by the 95% confidence limits of the regression model. We were able to verify predictions by the proposed methodology with data from Unzen volcano (Japan) and Mayon volcano (The Philippines). The consistencies observed highlight the applicability of this approach for hazard mitigation and real-time emergency management.  相似文献   
5.
Statistical analyses of landslide deposits from similar areas provide information on dynamics and rheology, and are the basis for empirical relationships for the prediction of future events. In Central America landslides represent an important threat in both volcanic and non-volcanic areas. Data, mainly from 348 landslides in Nicaragua, and 19 in other Central American countries have been analyzed to describe landslide characteristics and to search for possible correlations and empirical relationships. The mobility of a landslide, expressed as the ratio between height of fall (H) and run-out distance (L) as a function of the volume and height of fall; and the relationship between the height of fall and run-out distance were studied for rock falls, slides, debris flows and debris avalanches. The data show differences in run-out distance and landslide mobility among different types of landslides and between debris flows in volcanic and non-volcanic areas. The new Central American data add to and seem consistent with data published from other regions. Studies combining field observations and empirical relationships with laboratory studies and numerical simulations will help in the development of more reliable empirical equations for the prediction of landslide run-out, with applications to hazard zonation and design of optimal risk mitigation measures.  相似文献   
6.
When characterizing geologic natural hazards, specifically granular flows including pyroclastic flows, debris avalanches and debris flows, perhaps the most important factor to consider is the area of inundation. One of the key parameters demarcating the leading edge of inundation is the run-out distance. To define the run-out distance, it is necessary to know when the flow stops. Numerical experiments are presented for determining a stopping criterion and exploring the suitability of the Savage-Hutter theory for computing inundation areas of granular flows. The stopping criterion is a function of dimensionless average velocity, pile aspect ratio and internal and bed friction angle and can be implemented on either a global (entire flow) or local (small areas of the flow) level. Slumping piles on a horizontal surface, and geophysical flows over complex topography were simulated. Mountainous areas, such as Colima volcano, Mexico; Casita, Nicaragua; Little Tahoma Peak, USA, and the San Bernardino Mountains, USA, were used as test regions. These areas have combinations of steep, open slopes and sinuous channels. Because of differences in topography and physical scaling, slumping piles in the laboratory and geophysical flows in natural terrain must be scaled differently to determine a reasonable dimensionless relationship for the stopping criterion.  相似文献   
7.
A strong earthquake (M J 6.9, M W 6.6–6.7) at about 11 km depth hit the western shore of the Noto Peninsula on Honshu, Japan, at about 00:42 coordinated universal time (9:42 a.m. local time) on 25 March 2007 (the Noto Hanto Earthquake in 2007). The earthquake triggered only 61 landslides, with most traveling short distances. It caused one long run-out landslide in the Nakanoya district of Monzen town, Wajima city, Ishikawa Prefecture, when a portion of a deep-seated landslide transformed into a moderate debris slide down a channel. The rock slide occurred on a south-facing convex-shaped slope on a small spur where earthquake ground shaking likely was strongly amplified by topography. A portion of the rock slide reached a small channel floored by materials containing abundant groundwater. Constant-volume box-shear tests on normally consolidated saturated specimens revealed that the apparent angle of internal friction of the channel-floor material was 33–36° at 10-mm shear displacement and did not show much decrease in effective normal stress during shearing. In situ rock-sliding testing on the exposed channel materials showed a low kinetic-friction angle of about 21°. We suggest that an unsaturated portion of the rock slide slid down the channel, with sliding between the rock-slide mass and the channel floor. Because the slope angle of the travel path nearly equaled the kinetic-friction angle, the unsaturated rock slide mass may have traveled at a moderately slow speed, or it might have decelerated and accelerated. Slow speed is supported by accounts from local residents that suggest movement of debris continued for 3 days after the main shock.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号