首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   8篇
  国内免费   6篇
测绘学   3篇
大气科学   10篇
地球物理   20篇
地质学   20篇
海洋学   37篇
天文学   3篇
综合类   5篇
自然地理   11篇
  2024年   1篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   7篇
  2016年   5篇
  2015年   3篇
  2014年   3篇
  2013年   6篇
  2011年   3篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   11篇
  2006年   5篇
  2005年   4篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1993年   2篇
  1992年   4篇
  1988年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
排序方式: 共有109条查询结果,搜索用时 31 毫秒
1.
The spatial size distribution of grunts and snappers have previously indicated the separation of juveniles in nursery habitats from the adults on the coral reef. This implies life cycle migrations from nursery habitats (such as seagrass beds and mangroves) to the coral reef. If diet shifts are related to such migrations, then the diets of these fish must change before or around the fish size at which such migrations take place. A wide size range of juveniles of two grunt species (Haemulon sciurus and Haemulon flavolineatum) and of two snapper species (Lutjanus apodus and Ocyurus chrysurus) were caught in seagrass beds and mangroves, and their gut contents identified and quantified. Regression analysis between fish size and dietary importance of small crustaceans showed a negative relationship in all four species. Positive relations were found for H. sciurus, L. apodus and O. chrysurus between fish length and the dietary importance of decapods, and for L. apodusand O. chrysurus between fish length and prey fish importance. Critical changes in the fish diets with fish size were examined by application of a Canonical Correspondence Analysis (CCA). The CCA yielded three clusters of size-classes of fishes with similar diets, and application of a Mantel test showed that each of these clusters had significantly different diets, and that each cluster diet was significantly specialised. The size at which a fish species ‘switched’ from one cluster to another was compared with size-at-maturity data and with the typical size at which these species migrate from the nursery habitats to the coral reef. H. sciurus and H. flavolineatum may be prompted to migrate from the nursery habitats to coral reef habitats because of dietary changes, or because of the development of the gonads. For L. apodus and O. chrysurus, a dietary changeover forms a more likely explanation for nursery-to-reef migrations than does sexual maturation because these species reach maturity at sizes much larger than the maximum size of individuals found in nursery habitats. Although other factors may theoretically initiate or promote the migration patterns, the results of this study indicate that ontogenetic dietary changes may crucially influence the nursery-to-coral reef migrations of these reef fish species.  相似文献   
2.
Japanese fisheries production in the Japan/East Sea between 1958 and 2003 increased to their peak (1.76 million tons) in the late 1980s and decreased abruptly with the collapse of Japanese sardine. Catch results for 58 fisheries and various environmental time-series data sets and community indices, including mean trophic level (MTL) and Simpson’s diversity index (DI), were used to investigate the impacts of fishing and climate changes on the structure of the fish community in the Tsushima warm current (TWC) region of the Japan/East Sea. The long-term trend in fisheries production was largely dependent on the Japanese sardine that, as a single species, contributed up to 60% of the total production in the Japanese waters of the Japan/East Sea during the late 1980s. Excluding Japanese sardine, production of the small pelagic species was higher during 1960s and 1990s but lower during 1970s and 1980s. This variation pattern generally corresponds with the trend in water temperature, warmer before early 1960s and after 1990s but colder during 1970s and 1980s. The warm-water, large predatory fishes and cold water demersal species show opposite responses to the water temperature in the TWC region, indicating the significant impact of oceanic conditions on fisheries production of the Japan/East Sea. Declines in demersal fishes and invertebrates during 1970s and 1980s suggested some impact of fishing. MTL and DI show a similar variation pattern: higher during 1960s and 1990s but lower during 1970s and 1980s. In particular, the sharp decline during the 1980s resulted from the abundant sardine catches, suggesting that dominant species have a large effect on the structure of the fish community in the Japan/East Sea. Principal component analysis for 58 time-series data sets of fisheries catches suggested that the fish community varied on inter-annual to inter-decadal scales; the abrupt changes that occurred in the mid-1970s and late 1980s seemed to correspond closely with the climatic regime shifts in the North Pacific. These results strongly suggest that the structure of the fish community in the Japan/East Sea was largely affected by climatic and oceanic regime shifts rather than by fishing. There is no evidence showing “fishing down food webs” in the Japan/East Sea. However, in addition to the impacts of abrupt shifts that occurred in the late 1980s, the large predatory and demersal fishes seem to be facing stronger fishing pressure with the collapse of the Japanese sardine.  相似文献   
3.
Inverse analysis is increasingly used in ecosystem modelling to objectively reconstruct a large number of unknown flows or interactions from a small number of observations. This type of analysis may be useful in relating observed regime shifts in ecosystem structure to underlying processes. Inversions of ecosystem flow networks currently use a constrained least-squares solution which at the same time minimizes the squared norm (the sum of squares) of the reconstructed flows. This minimum norm (MN) inversion is thought to be a parsimonious solution to the ecosystem flow inverse problem, but it may well not reflect how ecosystems are organised. It has been proposed instead that ecosystems evolve to maximize energy/mass flows or that they maximize the information content of the network weighted by ecosystem flows (ascendancy). We used simulated inverse experiments, where inverse analyses are applied to simulations of flow networks, to explore objective functions different than the MN generally used. We could not compute inverse solutions that maximize ascendancy because the objective function is unbounded. We could calculate inversions that maximize flows; however, these generally overestimated the simulated flows, even though the simulations were designed to maximize flows. It appears that the ecosystem flow inverse problem is too under-determined (too few data relative to the number of unknowns) to allow the use of these maximizing goal functions. We introduce a new minimization that simultaneously minimizes the squared flows and the squared differences between flows. This smoothing minimization makes the inverse flows as even as possible and it helps with some technical issues with MN inversions. The simulated inverse experiments indicated that this smoothed norm (SM) is the most robust in comparative analyses of contrasting ecosystem states, such as those that can be associated with regime shifts. Like the MN inversion, the SM inversion has no ecological basis. However, it is a conservative norm that is less likely to produce false differences between the dynamics of regimes.  相似文献   
4.
The regime shift of the 1920s and 1930s in the North Atlantic   总被引:6,自引:3,他引:6  
During the 1920s and 1930s, there was a dramatic warming of the northern North Atlantic Ocean. Warmer-than-normal sea temperatures, reduced sea ice conditions and enhanced Atlantic inflow in northern regions continued through to the 1950s and 1960s, with the timing of the decline to colder temperatures varying with location. Ecosystem changes associated with the warm period included a general northward movement of fish. Boreal species of fish such as cod, haddock and herring expanded farther north while colder-water species such as capelin and polar cod retreated northward. The maximum recorded movement involved cod, which spread approximately 1200 km northward along West Greenland. Migration patterns of “warmer water” species also changed with earlier arrivals and later departures. New spawning sites were observed farther north for several species or stocks while for others the relative contribution from northern spawning sites increased. Some southern species of fish that were unknown in northern areas prior to the warming event became occasional, and in some cases, frequent visitors. Higher recruitment and growth led to increased biomass of important commercial species such as cod and herring in many regions of the northern North Atlantic. Benthos associated with Atlantic waters spread northward off Western Svalbard and eastward into the eastern Barents Sea. Based on increased phytoplankton and zooplankton production in several areas, it is argued that bottom-up processes were the primary cause of these changes. The warming in the 1920s and 1930s is considered to constitute the most significant regime shift experienced in the North Atlantic in the 20th century.  相似文献   
5.
气候转型与早期人类迁徙   总被引:4,自引:0,他引:4  
目前的旧石器考古证据表明,更新世早期可能发生了两次人类迁徙浪潮,时间分别在1.8-1.6MaBP和1.0MaBP左右,第一阶段,古人类演化为直立人并开始走出非洲、迁徙至其它中低纬度的热带-亚热带地区;第二阶段,直立人开始占据中高纬度的温带和干旱-半干旱地区。这两个阶段也是第四纪气候发生转型、环境产生重大调整的时期。二者在发生时间上的一致性揭示了它们之间的内在联系,推测气候转型时期环境转变是这两次人类迁徙浪潮的主要驱动力。  相似文献   
6.
This study uses a comparative approach to examine responses of marine ecosystems to climatic regime shifts. The three seas surrounding the Korean peninsula, the Japan/East Sea, the East China Sea and the Yellow Sea represent three contiguous but distinct ecosystems. Sampling has been carried out by the National Fisheries Research and Development Institute of South Korea since 1965, using the same methods in all three seas. Sampling was generally synoptic. Amplitude time series of 1st EOF modes for temperature, salinity, zooplankton biomass and concentrations of four major zooplankton taxa were used to determine whether the three marine ecosystems respond in a similar manner to climate variations. Temporal patterns of the variables were strongly similar among the three seas at decadal time scales, but very weakly similar at interannual scales. All three seas responded to a climatic regime shift that occurred in 1989. Temperature, zooplankton biomass and copepod concentrations increased in the late 1980s or early 1990s in all three seas. Concentrations of amphipods, chaetognaths and euphausiids also increased in the Japan/East Sea and the East China Sea, but not the Yellow Sea. The Yellow Sea ecosystem differs strongly from the other two seas, and water exchange between the Yellow Sea and the East China Sea is much weaker than that between the East China Sea and Japan/East Sea. Spatial patterns of zooplankton determined by the EOF analysis were closely related to currents and fronts in each of the three seas.  相似文献   
7.
本文通过用树木年轮资料重建的祁连山地区5~7月份1310年以来的湿润指数序列,建立了一个反映该地区湿润指数年际变幅序列,对这两个序列分别进行了等级分类和干湿、强弱的时段分析,并用最大熵谱分析法对这两个序列的不同时段分别进行了周期分析。采用HK突变检验方法对这两个序列分别进行了突变分析,发现祁连山地区的湿润指数及其年际变幅存在明显的突变年份。  相似文献   
8.
Xueying Han 《Marine Ecology》2016,37(6):1179-1189
Alternate attractors have been shown to exist in a variety of terrestrial and aquatic systems, e.g. temperate forests, savannas, shallow lakes, wetlands, coral reefs, kelp forests. The shift from one attractor to another, also referred to as a regime shift, is thought to occur when a system passes some critical threshold such that the trajectory of the system changes direction. Alternate attractors in population dynamics can also exist, leading to alternate stable states in the population abundance of a species. This study explored alternate attractors in the population dynamics of the Indo‐Pacific sea urchin Diadema savignyi and the potential underlying mechanisms that promote its bi‐stability. In Moorea, French Polynesia, the local abundance of D. savignyi, a functionally important herbivore in lagoon habitats, occurs in two states: (i) solitary individuals that occupy crevices in low densities and (ii) aggregations of tens to hundreds of individuals. These different states are temporally stable and are not explained by spatial differences in recruitment rates of juveniles. A field experiment revealed that the per capita mortality rate of adult D. savignyi was substantially lower at sites where urchins occurred in aggregations compared with sites at which they were solitary individuals. An additional experiment showed that per capita mortality decreased with increasing aggregation size. Individuals in high‐density aggregations, however, had significantly smaller test diameters than solitary individuals, indicating that individuals in aggregations may be food limited. Collectively, the evidence suggests that the two different local abundance states of D. savignyi result from negative feedback loops where high local density can be maintained by aggregative behavior that greatly reduces per capita risk of predation when the local number of adult sea urchins is sufficiently large; sites with few sea urchins remain at low density because individuals are more susceptible to predation when crevices are occupied but there are not enough individuals to form large aggregations. Thus, there may be alternate attractors in the population dynamics of D. savignyi that can produce either persistently low or high local population densities.  相似文献   
9.
The scarcity of data on fish catches difficult management of small-scale fisheries in developing countries. This study applies fishers’ knowledge to investigate temporal changes in the amount (biomass) and composition (major ecological categories) of fishing resources exploited by small-scale coastal fisheries in the southeastern Brazilian coast. Four hypotheses were investigated: (1) The amount of fish caught reported by fishers would decrease over time. (2) Older fishers would report higher fish catches than younger fishers. (3) Recent interviews would mention large-sized predators less often. (4) Recent interviews would mention less high valued fishing resources. Interviews with 421 fishers in 36 communities in the southeastern Brazilian coast were analyzed, covering a time span of 14 years, from 1995 to 2009. The hypothesis 1 was confirmed, 3 was partially confirmed, while 2 and 4 were not confirmed. Fishers’ age was unrelated to all variables. The results from fishers’ interviews indicated the temporal trends of: (1) a decrease in the biomass of fish caught; (2) an increase in the occurrence of smaller fish and invertebrates in the catch; (3) an increase of high value fishing resources; and (4) maintenance of large predators. The first two indicators suggest excessive fishing, but the later indicators (3 and 4) suggest that the socioecological system of the southeastern Brazilian coast had not yet undergone major ecological shifts.  相似文献   
10.
Strong and rapid greenhouse gas (GHG) emission reductions, far beyond those currently committed to, are required to meet the goals of the Paris Agreement. This allows no sector to maintain business as usual practices, while application of the precautionary principle requires avoiding a reliance on negative emission technologies. Animal to plant-sourced protein shifts offer substantial potential for GHG emission reductions. Unabated, the livestock sector could take between 37% and 49% of the GHG budget allowable under the 2°C and 1.5°C targets, respectively, by 2030. Inaction in the livestock sector would require substantial GHG reductions, far beyond what are planned or realistic, from other sectors. This outlook article outlines why animal to plant-sourced protein shifts should be taken up by the Conference of the Parties (COP), and how they could feature as part of countries’ mitigation commitments under their updated Nationally Determined Contributions (NDCs) to be adopted from 2020 onwards. The proposed framework includes an acknowledgment of ‘peak livestock’, followed by targets for large and rapid reductions in livestock numbers based on a combined ‘worst first’ and ‘best available food’ approach. Adequate support, including climate finance, is needed to facilitate countries in implementing animal to plant-sourced protein shifts.

Key policy insights

  • Given the livestock sector’s significant contribution to global GHG emissions and methane dominance, animal to plant protein shifts make a necessary contribution to meeting the Paris temperature goals and reducing warming in the short term, while providing a suite of co-benefits.

  • Without action, the livestock sector could take between 37% and 49% of the GHG budget allowable under the 2°C and 1.5°C targets, respectively, by 2030.

  • Failure to implement animal to plant protein shifts increases the risk of exceeding temperate goals; requires additional GHG reductions from other sectors; and increases reliance on negative emissions technologies.

  • COP 24 is an opportunity to bring animal to plant protein shifts to the climate mitigation table.

  • Revised NDCs from 2020 should include animal to plant protein shifts, starting with a declaration of ‘peak livestock’, followed by a ‘worst first’ replacement approach, guided by ‘best available food’.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号