首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   9篇
  国内免费   1篇
地球物理   14篇
地质学   6篇
海洋学   77篇
  2017年   5篇
  2016年   5篇
  2015年   4篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   8篇
  2010年   5篇
  2009年   7篇
  2008年   8篇
  2007年   3篇
  2006年   8篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1992年   4篇
  1990年   1篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
1.
2.
Abstract. In situ investigations of growth and production in a stand of Posidonia oceanica (L.) DELILE at a depth of 4 m at Ischia (Gulf of Naples) were carried out over two growing seasons. Posidonia starts to grow in August and an average bundle produces ten leaves in increasing time intervals until May. Growth curves for the leaves are given. Maximum leaf standing crop is in May with 1300 g dry weight per m-2, leaf area index at this time reaches 22 m2 m-2. Leaf net productivity is highest in March with 12 g dry weight per m2 per day. Annual leaf production is estimated as 3110 g dry weight per m2, “underground” production as 115 g dry weight per m2. About half the leaf production is exported from the system. Adaptive strategies of the growth and production pattern are discussed.  相似文献   
3.
Abstract. Investigations were carried out in a Posidonia oceanica meadow at Ischia (Gulf of Naples) along a depth gradient from 1 to 32 m in November 1979 and May 1981.
In these two months, different discontinuities were found at the sampling stations (1, 5, 10, 20, 30 m) at 10 m for leaf features, between 1 and 5 m for the algal community and the vagile fauna. The leaf features (length, surface, and biomass) along the transects show a delay in leaf production toward the deeper stations, below the thermocline.
The algal community shows in both seasons and in all stations a persistence of an encrusting layer, mostly represented by Corallinaceae and the brown alga Myrionema orbiculare , while at the shallowest station (1 m) the community is characterized by a more developed upright layer.
The vagile fauna of the leaf stratum, mostly represented by Polychaeta, Mollusca , and Crustacea (Peracarida and Decapoda) , shows a consistent zonation in both seasons along the transect. A superficial community at I m, characterized by a low number of species and individuals and specialized for high environmental energy levels, and a deeper community, persistent in time and more strictly related to the Posidonia oceanica meadows, are identified.
The influence of environmental factors and the importance of meadow structure for the zonation of the algal and animal communities are discussed.  相似文献   
4.
A case study on the optimization of Posidonia oceanica density interpolation, using a data set from a large meadow at Porto Conte Bay (NW Sardinia, Italy), is presented. Ordinary point kriging, cokriging and a weighted average based on inverse square distance were used to interpolate density data measured in 36 sampling stations. The results obtained from different methods were then compared by means of a leave‐one‐out cross‐validation procedure. The scale at which interpolation was carried out was defined on the basis of the Hausdorff dimension of the variogram. Optimizing spatial scale and data points search strategy allowed obtaining more accurate density estimates independently of the interpolation method.  相似文献   
5.
Abstract. The proximate composition of the various components of Posidonia oceanica is given in terms of gravimetric and energetic level and amount of plants from 2 depths at Port-Cros (Var. France). The level of proximate constituents differed little between the leaves (regardless of age) and the roots, but the rhizome contained much more soluble carbohydrate and less structural carbohydrate and ash. Because of this, the energy level in the leaves was more in terms of organic material and less in terms of total material than the energy level in the rhizome. The leaves of a P. oceanica shoot at 2 m depth in July contained 1.6 g organic material. 29.0 kJ. The weight and energy of the soluble carbohydrate in the rhizome from the base of the leaves to the 18th sheath scale decreased by ca. 40% from October to March and increased by ca. 100% from March to July.  相似文献   
6.
When trying to improve gas productivity from unconventional sources a first aim is to understand gas storage and gas flow potential through the rock by investigating the microstructure, mineralogy and matrix porosity of unfractured shale. The porosity and mineralogy of the Mulgrave Shale member of the Whitby Mudstone Formation (UK) were characterized using a combination of microscopy, X-ray diffraction and gas adsorption methods on samples collected from outcrops. The Whitby Mudstone is an analogue for the Dutch Posidonia Shale which is a possible unconventional source for gas. The Mulgrave shale member of the Whitby Mudstone Formation can microstructurally be subdivided into a fossil rich (>15%) upper half and a sub-mm mineralogically laminated lower half. All clasts are embedded within a fine-grained matrix (all grains < 2 μm) implying that any possible flow of gas will depend on the porosity and the pore network present within this matrix. The visible SEM porosity (pore diameter > 100 nm) is in the order of 0.5–2.5% and shows a non-connected pore network in 2D. Gas adsorption (N2, Ar, He) porosity (pore diameters down to 2 nm) has been measured to be 0.3–7%. Overall more than 40% of the visible porosity is present within the matrix. Comparing the Whitby Mudstone Formation to other (producing) gas shales shows that the rock plots in the low porosity and high clay mineral content range, which could imply that Whitby Mudstone shales could be less favourable to mechanical fracturing than other gas shales. Estimated permeability indicates values in the micro-to nano-darcy range.  相似文献   
7.
Processes acting on the early-life histories of marine organisms can have important consequences for the structuring of benthic communities. In particular, the degree of coupling between larval supply and adult abundances can wield considerable influence on the strength of trophic interactions in the ecosystem. These processes have been relatively well described in rocky systems and soft-sediment communities, and it is clear that they are governed by very different bottlenecks. Seagrass meadows make interesting study systems because they bear structural affinities to both soft sediments as well as rocky substrates. We examined the early-life history of Paracentrotus lividus, one of the dominant herbivores in Mediterranean seagrass meadows, to identify the drivers of population dynamics in this species. We measured spatial and temporal variability in sea urchin post-settlement in 10 Posidonia oceanica meadows in the North-Western Mediterranean over a period of two years, and compared the numbers with the one-year old cohort a year later (i.e. the new population recruitment) as well as between successive size–age groups. Urchin post-settlers differed substantially between meadows but were present in both years in all meadows surveyed, suggesting that larval supply was not limiting for any of the studied sites. However, in six of the studied meadows, the one-year cohort of urchins was absent in both years, indicating that post-settlement processes strongly affected urchins in these meadows. In contrast, in four of the studied meadows, there was a strong coupling between post-settlers and one-year cohort individuals. These meadows were structurally different from the others in that they were characterised by an exposed matrix of rhizomes forming a dense seagrass mat. This mat apparently strongly mediates post-settlement mortality, and its presence or absence dictates the successful establishment of urchin populations in seagrass meadows. As the population aged, the relationship between size–age groups decreased evidencing the action of other processes. Yet, these results indicate that differences in physical structure are a vital bottleneck for sea urchin populations in seagrass meadows. Exploring the interaction between ecosystem structure and early-life history may provide a broader and more unified framework to understand the dynamics of a range of benthic habitats, including rocky substrates, soft sediments and seagrass meadows.  相似文献   
8.
The aim of this work is to study the temporal dynamics of rhizome epiphytes and sessile animals living on the rhizomes of the seagrass Posidonia oceanica in the east of Tunisia. Surveys were conducted in October 2009, and in January, April and August 2010 on a fringing reef located in Chebba. Rhizomes were sampled by SCUBA diving at three stations. Samples were examined with a microscope to estimate the cover of macroinvertebrate and macroalgal organisms on the top 10 cm of each rhizome. Results revealed a high diversity of epiphytes on P. oceanica rhizomes with a dominance of red and brown algae, ascidians, and bryozoans. Distinct temporal changes were observed in Oued Lafrann, with a high January cover (winter period) for all groups. These winter increases can be attributed to: (i) the low phenological parameters of P. oceanica in winter that reduce the effects of shading, (ii) life cycles of the epiphytes and invertebrates, (iii) water motion and (iv) grazing.  相似文献   
9.
10.
The decapod assemblage associated with a Posidonia oceanica meadow located near its western limit of biogeographic distribution was studied over an annual cycle. Fauna samples were taken seasonally over a year (five replicates per season) in two sites located 7 km apart, using a non‐destructive sampling method (airlift sampler) for the seagrass. The dominant species of the assemblage, Pisidia longimana, Pilumnus hirtellus and Athanas nitescens, were associated with the protective rhizome stratum, which is mainly used as a nursery. The correlations between decapod assemblage structure and some phenological parameters of the seagrass shoots and wave height were negative or null, which reflects that species associated with the rhizome had a higher importance than those associated with the leaf stratum. The abundance and composition of the decapod assemblage as well as the ecological indexes displayed a seasonality trend with maximum values in summer‐autumn and minimum in winter‐spring, which were related to the seawater temperature and the recruitment periods of the dominant species. The spatial differences found in the structure and dynamics of the assemblages may be due to variations in the recruitment of the dominant species, probably as a result of the influence of local factors (e.g. temperature, currents) and the high dispersal ability of decapods, together with the patchy configuration and the surrounding habitats. The studied meadows are fragmented and are integrated within a mosaic of habitats (Cymodocea nodosa patches, algal meadows, rocky and sandy bottoms), which promotes the movement of individuals and species among them, maintaining a high species richness and evenness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号