首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   29篇
  国内免费   12篇
大气科学   1篇
地球物理   75篇
地质学   103篇
海洋学   52篇
天文学   4篇
综合类   4篇
自然地理   3篇
  2023年   3篇
  2022年   3篇
  2021年   2篇
  2020年   9篇
  2019年   5篇
  2018年   7篇
  2017年   13篇
  2016年   14篇
  2015年   9篇
  2014年   17篇
  2013年   14篇
  2012年   5篇
  2011年   6篇
  2010年   13篇
  2009年   20篇
  2008年   10篇
  2007年   8篇
  2006年   10篇
  2005年   14篇
  2004年   3篇
  2003年   3篇
  2002年   8篇
  2001年   7篇
  2000年   5篇
  1999年   3篇
  1998年   5篇
  1997年   10篇
  1996年   2篇
  1994年   2篇
  1993年   3篇
  1990年   2篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有242条查询结果,搜索用时 0 毫秒
1.
 A steady radon exhalation is assumed in most publications. In a village of North-East Hungary, however, high radon concentrations have been measured, differing strongly in neighbouring houses and varying in time, due to the interplay of geochemical phenomena. Received: 20 November 1995 · Accepted: 18 June 1996  相似文献   
2.
Buntsandstein deposits generated in a slowly subsiding basin on the western margin of the Iberian Chain are represented by a stratigraphic succession of fluvial deposits less than 100 m thick (conglomerates, sandstones, and shales). Diagenetic processes in sandstones can be grouped as eodiagenetic, mesodiagenetic, and telodiagenetic. Eodiagenesis can be associated with Muschelkalk, Keuper, and probably early Jurassic times. Mesodiagenesis is probably related to Jurassic times. Diagenetic chemical reactions suggest a maximum burial less than 1.5 km and low temperatures (<120°C). Patterns of porosity reduction by compaction and cementation suggest four diagenetic stages: (1) Loss of primary porosity by early mechanical compaction; (2) early cementation (K-feldspar and dolomite); (3) dissolution of cements; and (4) framework collapse by re-compaction. These stages are manifested by the presence of two types of sandstone. Type I sandstones present high intergranular volume (mean, 30%). Type II sandstones are characterized by high compactional porosity loss and exhibit low values of intergranular volume (mean, 16.9%). Type II sandstones are associated with the dissolution of cement and later re-compaction of type I sandstones. An intermediate telodiagenetic phase is deduced and related to the sharp unconformity between Lower Cretaceous sediments and the underlying sediments. This suggests that a mechanically unstable framework collapsed during the Cretaceous, generating type II sandstones. The analyzed diagenetic paths have a wide applicability on similar marginal areas of rift basins.  相似文献   
3.
运用铸体薄片、扫描电镜、能谱分析及溶蚀实验等多种测试手段对鄂尔多斯盆地西北部二叠系砂岩填隙物进行了成份和成岩演化分析,认为砂岩中的填隙物主要为凝灰质填隙物,而不是普通意义上的粘土矿物。在有残余粒间孔隙或裂缝沟通的较开放性水环境里,凝灰质填隙物蚀变程度强,Si、Al、K、Na及Ca等离子因活性不同而发生分异,蚀变为“脏”高岭石及硅质团块等产物;封闭环境下,凝灰质填隙物保存完好,偏光显微镜下显示出似非晶态波状消光,活性强的K、Na元素含量仍然很高。凝灰质填隙物分异过程中,可以产生一定数量的溶蚀孔隙及晶间孔隙,砂岩储集性能得到了明显改善。对声波时差异常带砂岩进行大量的铸体薄片观察,证实了本区砂岩粒间溶蚀孔隙发育,凝灰质填隙物发生了强烈溶蚀。综合分析26口井的资料,发现垂向上凝灰质填隙物溶蚀强度呈箱型展布,箱内“脏”高岭石及溶蚀孔隙发育,箱顶部凝灰质填隙物含量高,保存好,并缺少“脏”高岭石团块出现。  相似文献   
4.
Understanding the oil distribution characteristics in unconventional tight reservoirs is crucial for hydrocarbon evaluation and oil/gas extraction from such reservoirs. Previous studies on tight oil distribution characteristics are mostly concerned with the basin scale. Based on Lucaogou core samples, geochemical approaches including Soxhlet extraction, total organic carbon (TOC), and Rock-Eval are combined with reservoir physical approaches including mercury injection capillary pressure (MICP) and porosity-permeability analysis, to quantitatively evaluate oil distribution of tight reservoirs on micro scale. The emphasis is to identify the key geological control factors of micro oil distribution in such tight reservoirs. Dolomicrites and non-detrital mudstones have excellent hydrocarbon generation capacity while detritus-containing dolomites, siltstones, and silty mudstones have higher porosity and oil content, and coarser pore throat radius. Oil content is mainly controlled by porosity, pore throat radius, and hydrocarbon generation capacity. Porosity is positively correlated with oil content in almost all samples including various lithologies, indicating that it is a primary constraint for providing storage space. Pore throat radius is also an important factor, as oil migration is inhibited by the capillary pressure which must be overcome. If the reservoir rock with suitable porosity has no hydrocarbon generation capacity, pore throat radius will be decisive. As tight reservoirs are generally characterized by widely distributed nanoscale pore throats and high capillary pressure, hydrocarbon generation capacity plays an important role in reservoir rocks with suitable porosity and fine pore throats. Because such reservoir rocks cannot be charged completely. The positive correlation between hydrocarbon generation capacity and oil content in three types of high porosity lithologies (detritus-containing dolomites, siltstones, and silty mudstones) supports this assertion.  相似文献   
5.
6.
Reservoir quality is a critical risk factor in deep to ultradeep reservoirs at depths >4.5 km. Analysis of Paleogene Wilcox sandstones on the upper Texas Gulf Coast provides insight into the evolution of reservoir quality during shallow to ultradeep burial diagenesis. Reduction of porosity and permeability with burial in Wilcox sandstones was evaluated using subsurface samples from 200 to 6700 m, at temperatures of 25–230 °C. Diagenesis and petrophysical properties were interpreted from petrographic data and core analyses. Wilcox sandstones are mostly lithic arkoses and feldspathic litharenites having an average composition of Q59F22R19. Provenance did not change significantly during Wilcox deposition in this area, nor does average sandstone composition vary among lower, middle, and upper Wilcox sandstones. However, composition does vary with sequence-stratigraphic position; lowstand slope-fan deposits contain more rock fragments than do deposits from highstand or transgressive systems tracts. Given observations from this onshore dataset, Wilcox sandstones deposited in deepwater environments in the Gulf of Mexico are likely to contain more rock fragments than their linked highstand equivalents.  相似文献   
7.
For normally consolidated clay, several researchers have developed a number of theoretical time factors to determine the coefficient of consolidation from piezocone test results. However, depending on assumptions and analytical techniques, it could vary considerably, even for a specific degree of consolidation. In this paper a method is proposed to determine a consistent coefficient of consolidation by applying the concept of an optimum design technique over all ranges of the degree of consolidation. Initial excess pore pressure distribution is assumed to be capable of being obtained by the successive spherical cavity expansion theory. The dissipation of pore pressure is simulated by means of a two-dimensional linear-uncoupled axi-symmetric consolidation analysis. The minimization of differences between measured and predicted excess pore pressure was carried out by the BFGS unconstrained optimum design algorithm with a one-dimensional golden section search technique. By analyzing numerical examples and in-situ test results, it was found that the adopted optimum design technique gives consistent and convergent results.  相似文献   
8.
Twenty-five uniaxial compression tests were performed to determine stress at onset of dilation, referred to herein as “the crack damage stress,” in heterogeneous dolomites and limestones. A simplified model for crack damage stress (σcd) is developed here using porosity, elastic modulus, Poisson's ratio and three empirical coefficients. The model shows that when porosity decreases and elastic modulus increases, σcd rapidly increases and approaches its maximum value. On the other hand, when porosity increases and elastic modulus decreases, σcd rapidly decreases and approaches its minimum value. The proposed model is validated for six heterogeneous limestone and dolomite formations which are widely distributed in Israel.  相似文献   
9.
Numerical prediction of performance of submerged breakwaters   总被引:1,自引:0,他引:1  
The results of a numerical model study on the transmission characteristics of a submerged breakwater are presented. Study aimed to determine the effect of depth of submergence, crest width, initial wave conditions and material properties on the transmission characteristics of the submerged breakwater. The results highlight the optimum crest width of the breakwater and optimum clear spacing between two breakwaters. A submerged permeable breakwater with ds/d=0.5, p=0.3 and f=1.0, reduces the transmission coefficient by about 10% than the impermeable breakwater. The results indicates an optimum width ratio of B/d=0.75 for achieving minimum transmission. By restricting the effective width ratio of the series of breakwaters to 0.75, studies were conducted to determine the effect of clear spacing between breakwaters on transmission coefficient, suggesting an optimum clear spacing of w/b=2.00 to obtain Kt below 0.6.  相似文献   
10.
Facies-scale trends in porosity and permeability are commonly mapped for reservoir models and flow simulation; however, these trends are too broad to capture bed and bed-set heterogeneity, and there is a need to up-scale detailed, bed-scale observations, especially in low-permeability reservoir intervals. Here we utilize sedimentology and ichnology at the bed- and bedset-scale to constrain the range of porosity and permeability that can be expected within facies of the Lower Cretaceous Viking Formation of south-central, Alberta, Canada.Three main facies were recognized, representing deposition from the middle shoreface to the upper offshore. Amalgamated, hummocky cross-stratified sandstone facies (Facies SHCS) consist of alternations between intensely bioturbated beds and sparsely bioturbated/laminated beds. Trace fossil assemblages in bioturbated beds of Facies SHCS are attributable to the archetypal Skolithos Ichnofacies, and are morphologically characterized by vertical, sand-filled shafts (VSS). Bioturbated beds show poor reservoir properties (max: 10% porosity, mean: 85.1 mD) compared to laminated beds (max 20% porosity, mean: 186 mD). Bioturbated muddy sandstone facies (Facies SB) represent trace fossil assemblages primarily attributable to the proximal expression of the Cruziana Ichnofacies. Four ichnological assemblages occur in varying proportions, namely sediment-churning assemblages (SC), horizontal sand-filled tube assemblages (HSF), VSS assemblages, and mud-filled, lined, or with spreiten (MLS) assemblages. Ichnological assemblages containing horizontal (max: 30% porosity, mean: 1.28 mD) or vertical sand-filled burrows (max: 10% porosity, mean: 2.2 mD) generally have better reservoir properties than laminated beds (max: 20% porosity, mean: 0.98 mD). Conversely, ichnological assemblages that consist of muddy trace fossils have lower porosity and permeability (max 10% porosity, mean: 0.89 mD). Highly bioturbated, sediment churned fabrics have only slightly higher porosity and permeability overall (max: 15% porosity, mean: 1.29 mD). Bioturbated sandy mudstone facies (Facies MB) contain ichnofossils representing an archetypal expression of the Cruziana Ichnofacies. Four ichnological assemblages occur throughout Facies MB that are similar to Facies SB; SC, HSF, VSS, and MLS assemblages. The SC (max: 15% porosity, mean: 21.67 mD), HSF (max: 20% porosity, mean: 3.79 mD), and VSS (max: 25% porosity, mean: 7.35 mD) ichnological assemblages have similar or slightly lower values than the laminated beds (max: 20% porosity, mean: 10.7 mD). However, MLS assemblages have substantially lower reservoir quality (max: 10% porosity, mean: 0.66 mD).Our results indicate that the most likely occurrence of good reservoir characteristics in bioturbated strata exists in sand-filled ichnological assemblages. This is especially true within the muddy upper offshore to lower shoreface, where vertically-oriented trace fossils can interconnect otherwise hydraulically isolated laminated sandstone beds; this improves vertical fluid transmission. The results of this work largely corroborate previous findings about ichnological impacts on reservoir properties. Unlike previous studies, however, we demonstrate that the characteristics of the ichnological assemblage, such as burrow form and the nature of burrow fill, also play an important role in determining reservoir characteristics. It follows that not all bioturbated intervals (attributed to the same facies) should be treated equally. When upscaling bed-scale observations to the reservoir, a range of possible permeability-porosity values can be tested for model sensitivity and to help determine an appropriate representative elementary volume.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号