首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   1篇
海洋学   13篇
综合类   2篇
  2009年   2篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2000年   2篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
Since the Intermediate Oyashio Water (IOW) gradually accumulates in Sagami Bay, it can reasonably be supposed that the IOW also flows out from Sagami Bay, even though it may be altered by mixing with other waters. We have occasionally observed a water less than 34.2 psu with a potential density of 26.8 at the southeastern area off Izu Peninsula in July 1993 by the training vessel Seisui-maru of Mie University. Observational data supplied by the Japan Meteorological Agency and the Kanagawa Prefectural Fisheries Experimental Station show that the IOW of less than 34.1 psu was observed at northern stations of the line PT (KJ) off the Boso Peninsula and to the east of Oshima in the late spring 1993. Based upon these observations, it is concluded that the IOW flows out from Sagami Bay into the Shikoku Basin along southeastern area off the Izu Peninsula. The less saline water (<34.2 psu) was also observed to the west of Miyake-jima during the same cruise, and the westward intrusion of IOW from south of the Boso Peninsula to the Shikoku Basin through the gate area of the Kuroshio path over the Izu Ridge was detected. This event indicated that the IOW branched south of the Boso Peninsula and flowed into Sagami Bay and/or into the gate area over the Izu Ridge. The southward intrusion of IOW into the south of the Boso Peninsula is discussed in relation to the latitudinal location of the main axes of the Kuroshio and the Oyashio. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
Vertical distribution of anthropogenic carbon content of the water (exDIC) in the Oyashio area just outside of the Kuroshio/Oyashio Interfrontal Zone (K/O Zone) was estimated by the simple 1-D advection-diffusion model calibrated by the distribution of chlorofluorocarbons (CFCs). The average concentration of exDIC for = 26.60–27.00 is multiplied by the volume transport of Oyashio water into the North Pacific Intermediate Water (NPIW) to estimate the annual transport of exDIC into NPIW through K/O Zone. The estimated transport of exDIC was 0.018–0.020 GtC/y, which corresponds to 15% of the whole total exDIC accumulation in the temperate North Pacific. A simple assessment using the NPIW 1-box model indicates that the current study explains at least 70% of the total annual transport of exDIC into NPIW, and that small exDIC sources for NPIW still exists in addition to K/O Zone.  相似文献   
3.
It is important to estimate hard-to-observe parameters in the ocean interior from easy-to-observe parameters. This study therefore demostrates a reconstruction of observed temperature and salinity profiles of the sea east of Japan (30°≈40°N, 140°≈150°E). The reconstruction was done by estimating suboptimal state from several values of the observed profiles and/or sea surface dynamic height (SDH) calculated from the profiles. The estimation used a variational method with vertical coupled temperature-salinity empirical orthogonal function (EOF) modes. Profiles of temperature and salinity in the subtropical region are effectively reconstructed from in situ temperature profile data, or sea surface temperature (SST) and SDH. For example, the analyzed temperature field from SST and SDH has an accuracy to within 1°C in the subtropical region. Salinity in the sea north of Kuroshio, however, is difficult to estimate because of its complex variability which is less correlated with temperature than in the subtropical region. Sea surface salinity is useful to estimate the subsurface structure. We also show the possibility that the estimation is improved by considering nonlinearity in the equation calculating SDH from temperature and salinity analysis values in order to examine the misfit between analysis and observation. Analysis using TOPEX/POSEIDON altimetry data instead of SDH was also performed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
4.
A series of numerical experiments were conducted with a high-resolution (eddy-permitting) North Pacific model to simulate the formation and spreading of the salinity minimum associated with the North Pacific Intermediate Water (NPIW). It was found that two factors are required to simulate a realistic configuration of the salinity minimum: a realistic wind stress field and small-scale disturbances. The NCEP reanalyzed wind stress data lead to better results than the Hellerman and Rosenstein wind stress data, due to the closer location of the simulated Oyashio and Kuroshio at the western boundary. Small-scale disturbances formed by relaxing computational diffusivity included in the advection scheme promote the large-scale isopycnal mixing between the Oyashio and Kuroshio waters, simulating a realistic configuration of the salinity minimum. A detailed analysis of the Oyashio water transport was carried out on the final three-year data of the experiment with reduced computational diffusivity. Simulated transport of the Kuroshio Extension in the intermediate layer is generally smaller than the observed value, while those of the Oyashio and the flow at the subarctic front are comparable to the observed levels. In the Oyashio-Kuroshio interfrontal zone the zonally integrated southward transport of the Oyashio water (140–155°E) is borne by the eddy activity, though the time-mean flow reveals the existence of a coastal Oyashio intrusion. In the eastern part (155°E–180°) the zonally integrated transport of the Oyashio water indicates a southward peak at the southern edge of the Kuroshio Extension, which corresponds to the branching of the recirculating flow from the Kuroshio Extension. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
5.
The topographic effect of the Izu Ridge on the horizontal distribution of the North Pacific Intermediate Water (NPIW) south of Japan has been studied using observational data obtained by the Seisui-Maru of Mie University (Mie Univ. data) and those compiled by Japan Oceanographic Data Center (JODC data). Both data sets show that water of salinity less than 34.1 psu on potential density () surface of 26.8 is confined to the eastern side of the Izu Ridge, while water of salinity less than 34.2 psu is confined to the southern area over the Izu Ridge at a depth greater than 2000 m and to the southeastern area in the Shikoku Basin. It is also shown by T-S analysis of Mie Univ. data over the Izu Ridge that water of salinity less than 34.2 psu dominates south of 30°N, where the depth of the Izu Ridge is deeper than 2000 m and NPIW can intrude westward over the Izu Ridge. JODC data reveal that relatively large standard deviations of the salinity on surface of 26.7, 26.8 and 26.9 are detected along the mean current path of the Kuroshio and the Kuroshio Extension. Almost all of the standard deviations are less than 0.05 psu in other area with the NPIW, which shows that the time variation in the salinity can be neglected. This observational evidence shows that the topographic effect of the Izu Ridge on the horizontal distribution of the NPIW, which is formed east of 145°E by the mixing of the Kuroshio water and the Oyashio water, is prominent north of 30°N with a depth shallower than 2000 m.  相似文献   
6.
This study discusses branching of the Kuroshio Current including North Pacific Intermediate Water (NPIW) into the South China Sea (SCS). The spreading path of the subtropical salinity minimum of NPIW is southwestward pointing to the Luzon Strait between Taiwan and Luzon islands. Using a large collection of updated hydrography, results show that the SCS is a cul-de-sac for the subtropical NPIW because even the NPIW’s upper boundary neutral density surface σ N = 26.5 is completely blocked by the Palawan sill and partly blocked by the southern Mindoro Strait. In autumn, NPIW is driven out of the Luzon Strait by the preceding anticyclonic summer monsoon due to an intraseasonal variation and seasonal phase lag response to the weaker summer monsoon. Stronger inflow under winter monsoon than outflow under summer monsoon results in a net annual transport of NPIW of about 1.1 ± 0.2 Sv (1 Sv = 106 m3s−1) into the SCS. This net transport accounts for the anomaly in NPIW transport across the World Ocean Circulation Experiment section P8 (130° E). An earlier study estimated a large westward NPIW transport of about 3.9 ± 0.2 Sv, resulting in a difference of 1.2 ± 0.2 Sv from the basin-wide mean of 2.7 ± 0.2 Sv. Observations are generally in agreement with numerical results although the intraseasonal signal seems to cause a slight bias and remains to be simulated by future model experiments.  相似文献   
7.
Almost half of the oceanic water columns exhibit double-diffusion. The importance of double-diffusion in global oceans‘ salt and heat fluxes, water-mass formation and mixing, and circulation is increasingly recognized. However, such an important physical process in the ocean has not been well studied. One of the reasons is the difficulty of parameterizing and quantifying the processes. The paper presented here attempts to quantify the double-diffusive fluxes of salt and heat in the ocean. Previous qualitative analysis by applying the water-mass Turner angle, mTu, to the North Pacific Intermediate Water (NPIW) layer showed a favorable condition for salt-fingering in the upper NPIW due to the overlying warm/salty water above the cold/fresh NPIW core, and a doubly-stable condition in the lower NPIW where potential temperature decreases with depth while salinity increases, inducing double stratification with respect to both potential temperature and salinity. The present study gives a quantitative estimate of double-diffusive fluxes of salt and heat contributed by salt-fingering in the upper NPIW layer.  相似文献   
8.
We investigated the variation of the North Pacific Intermediate Water (NPIW) distribution in the western North Pacific, focusing on the intermediate salinity minimum (S < 34.2) core observed along the meridional hydrographic sections including the 137°E repeat section by the Japan Meteorological Agency. This core is a cross-section of a low salinity tongue extending westward along the recirculation in the subtropical gyre. The core size shows remarkable variabilities in interannual and decadal time scales. The salinity change in the density layer during the period of core expansion (shrinking) represents the spatial salinity change in the tongue toward the west (east). Thus, we conclude that the core size variation is associated with the zonal wobble of the tongue having thicker distribution to the east, rather than temporal changes of the water mass itself. The core size at 137°E is well correlated with the meridional gradient of the depth in the isopycnal surface at the salinity minimum representing the recirculation intensity, suggesting a relation with the intensity of the subtropical gyre. A significant lag-correlation between the gradient and the wind forcing over the North Pacific suggests that the first mode baroclinic Rossby waves excited in the central North Pacific propagated westward to change the intensity of the recirculation in interannual time scales. In decadal time scales, it is found that the wind stress curl and heat flux fields in the North Pacific precede the recirculation by about 11 years.  相似文献   
9.
A series of numerical experiments were conducted with a high-resolution (eddy-permitting) North Pacific model to simulate the formation and spreading of the salinity minimum associated with the North Pacific Intermediate Water (NPIW). It was found that two factors are required to simulate a realistic configuration of the salinity minimum: a realistic wind stress field and small-scale disturbances. The NCEP reanalyzed wind stress data lead to better results than the Hellerman and Rosenstein wind stress data, due to the closer location of the simulated Oyashio and Kuroshio at the western boundary. Small-scale disturbances formed by relaxing computational diffusivity included in the advection scheme promote the large-scale isopycnal mixing between the Oyashio and Kuroshio waters, simulating a realistic configuration of the salinity minimum. A detailed analysis of the Oyashio water transport was carried out on the final three-year data of the experiment with reduced computational diffusivity. Simulated transport of the Kuroshio Extension in the intermediate layer is generally smaller than the observed value, while those of the Oyashio and the flow at the subarctic front are comparable to the observed levels. In the Oyashio-Kuroshio interfrontal zone the zonally integrated southward transport of the Oyashio water (140-155°E) is borne by the eddy activity, though the time-mean flow reveals the existence of a coastal Oyashio intrusion. In the eastern part (155°E-180°) the zonally integrated transport of the Oyashio water indicates a southward peak at the southern edge of the Kuroshio Extension, which corresponds to the branching of the recirculating flow from the Kuroshio Extension.  相似文献   
10.
The influence of the Kuroshio flow on the horizontal distribution of North Pacific Intermediate Water (NPIW) in the Shikoku Basin is examined based upon observational data collected by the training vessel “Seisui-maru” of Mie University together with oceanographic data compiled by the Japan Oceanographic Data Center (JODC). Although it has been stated that the NPIW with salinity less than 34.2 psu had been confined to the south of the Kuroshio main axis along the PT (KJ) Line on the eastern side of the Izu Ridge, a similar tendency can be detected on the western side of the Izu Ridge. Namely, the NPIW on the southern side of the Kuroshio main axis in the Shihoku Basin does not indicate a tendency to go northward across the Kuroshio main axis without an increase in salinity of more than 34.2 psu. However, the JODC data show that less saline water (<34.2 psu) was present on the northern side of the Kuroshio main axis south of the Kii Peninsula in May 1992. Satellite observed sea surface temperature (SST) data suggested that the Kuroshio approaches the Kii Peninsula after forming a small meander off Kyushu and some intrusions of the NPIW into the northern coastal side of the Kuroshio main axis occurred in this period. It is concluded that intrusion of the NPIW with salinity less than 34.2 psu to the northern coastal side through the Kuroshio main axis occurred during the decay period of the small meander path in May 1992. Based on these observational results, the source of the salinity minimum water on the northern coastal side of the Kuroshio main axis is discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号