首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   1篇
地球物理   3篇
地质学   4篇
海洋学   3篇
  2021年   1篇
  2017年   1篇
  2010年   1篇
  2009年   3篇
  2006年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Hudson River sediment microcosms from Piles Creek (PC), Piermont Marsh (PM), and Iona Island (II) were amended with ∼100 mM nitrate or sulfate to stimulate anaerobic bioremediation. Nitrate and sulfate decreased over two years of field incubation and the fraction of these losses due to diffusion to the water column was predicted using Fick’s law. Apparent diffusion (Dapp) values of 1-4 × 10−10 m2 s−1 predicted the majority of loss/gain from/to the sediments by 700 d, but not at all times. Effective diffusion (Deff) values predicted by the porosity function (Deff = Dmol ε4/3) were larger than those observed in the field, and field data indicates a cube power relationship: Deff = Dmol ε3. Dapp greatly increased in surficial layers at PM and PC in year two, suggesting that bioadvection caused by bioturbating organisms had occurred. The effects of bioturbation on transport to/from the sediments are modeled, and results can be applied to various sediment treatment scenarios such as capping.  相似文献   
2.
The concentrations of two greenhouse gases, nitrous oxide (N2O) and methane (CH4), and the bacterial processes involved in their production (nitrification and denitrification for N2O, and methanogenesis for CH4), were determined in surface waters of two coastal areas under the influence of freshwater inputs, on one part in the Gulf of Lions and the Rhone River plume, in northwestern Mediterranean Sea, and on the other part in the inner Thermaikos Gulf, in Aegean Sea, eastern Mediterranean Sea. High concentrations of dissolved CH4 and N2O were recorded in the surface waters of Gulf of Lions and Gulf of Thermaikos, up to 1300 nM for CH4, and 40 nM for N2O. No direct relationship could be found between the concentration and production of the biogases, as they may also be produced in deep water or bottom sediment in shallow areas, or derived from anthropogenic activity or ship contamination in polluted areas. Irrespective of the origin of CH4 and N2O, the presence of extremely high concentrations of these two gases in superficial seawater implies that they can easily escape to the atmosphere; consequently, these nearshore waters enriched in greenhouse gases may play an important role in the increase in atmospheric concentration of both CH4 and N2O.  相似文献   
3.
Paola Ridge, along the NW Calabrian margin (southern Tyrrhenian Sea), is one of the few reported deep sea sites of precipitation of authigenic carbonates in the Tyrrhenian Sea. Here, the changing composition of the seeping fluids and the dynamic nature of the seepage induced the precipitation of pyrite, siderite and other carbonate phases. The occurrence of this array of authigenic precipitates is thought to be related to fluctuation of the sulfate-methane transition zone (SMTZ).Concretions of authigenic minerals formed in the near sub-bottom sediments of the Paola Ridge were investigated for their geochemical and isotopic composition. These concretions were collected in an area characterized by the presence of two alleged mud volcanoes and three mud diapirs. The mud diapirs are dotted by pockmarks and dissected by normal faults, and are known for having been a site of fluid seepage for at least the past 40 kyrs. Present-day venting activity occurs alongside the two alleged mud volcanoes and is dominated by CO2-rich discharging fluids. This discover led us to question the hypothesis of the mud volcanoes and investigate the origin of the fluids in each different domed structure of the study area.In this study, we used stable isotopes (carbon and oxygen) of carbonates coupled with rare earth element (REE) composition of different carbonate and non-carbonate phases for tracing fluid composition and early diagenesis of authigenic precipitates. The analyses on authigenic precipitates were coupled with chemical investigation of venting gas and sea-water.Authigenic calcite/aragonite concretions, from surficial sediments on diapiric structures, have depleted 13C isotopic composition and slightly positive δ18O values. By contrast, siderite concretions, generally found within the first 6 m of sediments on the alleged mud volcanoes, yielded positive δ13C and δ18O values. The siderite REE pattern shows consistent LREE (light REE) fractionation, MREE (medium REE) enrichment and positive Gd and La anomalies. As shown by the REE distribution, the 13C-depleted composition and their association with chemosymbiotic fauna, calcite/aragonite precipitated at time of moderate to high methane flux close to the seafloor, under the influence of bottom seawater. Authigenic siderite, on the other hand, formed in the subseafloor, during periods of lower gas discharges under prolonged anoxic conditions within sediments in equilibrium with 13C-rich dissolved inorganic carbon (DIC) and 18O-rich water, likely related to methanogenesis and intermittent venting of deep-sourced CO2.  相似文献   
4.
Carbon isotope compositions of both sedimentary carbonate and organic matter can be used as key proxies of the global carbon cycle and of its evolution through time,as long as they are acquired from waters where the dissolved inorganic carbon(DIC)is in isotope equilibrium with the atmospheric CO2.However,in shallow water platforms and epeiric settings,the influence of local to regional parameters on carbon cycling may lead to DIG isotope variations unrelated to the global carbon cycle.This may be especially true for the terminal Neoproterozoic,when Gondwana assembly isolated waters masses from the global ocean,and extreme positive and negative carbon isotope excursions are recorded,potentially decoupled from global signals.To improve our understanding on the type of information recorded by these excursions,we investigate the pairedδ^13Ccarb andδ^13Corg evolution for an increasingly restricted late Ediacaran-Cambrian foreland system in the West Gondwana interior:the basal Bambui Group.This succession represents a 1~(st)-order sedimentary sequence and records two majorδ^13Ccarb excursions in its two lowermost lower-rank sequences.The basal cap carbonate interval at the base of the first sequence,deposited when the basin was connected to the ocean,hosts antithetical negative and positive excursions forδ^13Ccarb andδ^13Corg,respectively,resulting inΔ^13C values lower than 25‰.From the top of the basal sequence upwards,an extremely positiveδ^13Ccarb excursion is coupled toδ^13Corg,reaching values of+14‰and-14‰,respectively.This positive excursion represents a remarkable basin-wide carbon isotope feature of the Bambui Group that occurs with only minor changes inΔ^13C values,suggesting change in the DIC isotope composition.We argue that this regional isotopic excursion is related to a disconnection between the intrabasinal and the global carbon cycles.This extreme carbon isotope excursion may have been a product of a disequilibria between the basin DIC and atmospheric CO2 induced by an active methanogenesis,favored by the basin restriction.The drawdown of sulfate reservoir by microbial sulfate reduction in a poorly ventilated and dominantly anoxic basin would have triggered methanogenesis and ultimately methane escape to the atmosphere,resulting in a^13C-enriched DIC influenced by methanogenic CO2.Isolated basins in the interior of the Gondwana supercontinent may have represented a significant source of methane inputs to the atmosphere,potentially affecting both the global carbon cycle and the climate.  相似文献   
5.
Microbial activity in permeable tidal flat margin sediments is enhanced by two main processes. First, organic matter is supplied by rapid sedimentation at prograding tidal flat margins. Second, surface and deep pore water advection lead to a replenishment of the dissolved organic matter and sulfate pools. Increasing microbial activity towards the low water line is reflected in sulfate and methane profiles as well as in total cell numbers, sulfate reduction rates, and remineralization products. The impact of high sedimentation rates on pore water biogeochemistry is confirmed by inverse modeling reproducing the depth profiles obtained by measurements. In central parts of the tidal flats, low sedimentation rates and pore water flow velocities limit microbial activity despite the high availability of electron acceptors for microbial respiration such as sulfate. Therefore, tidal flat margins with high microbial activity are of special importance for budgeting biogeochemical cycling in tidal flat areas.  相似文献   
6.
Bacterial methane gas accumulations occur in Upper Oligocene to Early Miocene clastic deepwater sediments in the Austrian Molasse Basin. Methane gas is produced from the Upper Puchkirchen Fm. (Aquitanian) in the Atzbach-Schwanenstadt gas field which is one of the largest gas fields in this basin.  相似文献   
7.
Stable isotopes (H, O, C) were determined for ground and surface waters collected from two relatively undisturbed massive sulfide deposits (Halfmile Lake and Restigouche) in the Bathurst Mining Camp (BMC), New Brunswick, Canada. Additional waters from active and inactive mines in the BMC were also collected. Oxygen and hydrogen isotopes of surface and shallow groundwaters from both the Halfmile Lake and Restigouche deposits are remarkably uniform (− 13 to − 14‰ and − 85 to − 95‰ for δ18OVSMOW and δ2HVSMOW, respectively). These values are lighter than predicted for northern New Brunswick and, combined with elevated deuterium excess values, suggest that recharge waters are dominated by winter precipitation, recharged during spring melting. Deeper groundwaters from the Restigouche deposit, and from active and inactive mines have heavier δ18OVSMOW ratios (up to − 10.8‰) than shallow groundwaters suggesting recharge under warmer climate or mixing with Shield-type brines. Some of the co-variation in Cl concentrations and δ18OVSMOW ratios can be explained by mixing between saline and shallow recharge water end-members. Carbon isotopic compositions of dissolved inorganic carbon (DIC) are variable, ranging from − 15 to − 5‰ δ13CVPDB for most ground and surface waters. Much of the variation in the carbon isotopes is consistent with closed system groundwater evolution involving soil zone CO2 and fracture zone carbonate minerals (calcite, dolomite and siderite; average = − 6.5‰ δ13CVPDB). The DIC of saline Restigouche deposit groundwater is isotopically heavy (∼+ 12‰ δ13CVPDB), indicating carbon isotopic fractionation from methanogenesis via CO2 reduction, consistent with the lack of dissolved sulfate in these waters and the observation of CH4-degassing during sampling.  相似文献   
8.
Anaerobic biodegradation of hydrocarbons, using a variety of terminal electron acceptors (TEAs), is increasingly being reported both in laboratory studies and in the field. Of all the petroleum hydrocarbons, benzene is considered the most problematical due to its high toxicity and relatively high aqueous solubility. These, combined with its peculiarly stable structure, mean that it has long been considered recalcitrant in all but aerobic conditions. There is now a small, but growing, literature to suggest that this may not in fact be the case. We present an assessment of the field, encompassing reviews up to 1997 and original papers published since then. It appears that benzene is indeed degraded anaerobically, but that organisms capable of doing so are not ubiquitous. In addition, benzene degradation may be competitively inhibited by the presence of more readily degraded compounds such as toluene. Certainly, the occurrence and rate of benzene attenuation under anaerobic conditions is far more site-specific than for other benzene, toluene, ethylbenzene and xylenes (BTEX) compounds. We discuss a mathematical method for modelling redox-dependent, differential degradation rates.  相似文献   
9.
Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (≤ 1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations.In combination with δ13C- and δD-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1–2% modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6 m of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment.  相似文献   
10.
A large suite of natural gases (93) from the North West Shelf and Gippsland and Otway Basins in Australia have been characterised chemically and isotopically resulting in the elucidation of two types of gases. About 26% of these gases have anomalous stable carbon isotope compositions in the C1–C4 hydrocarbons and CO2 components, and are interpreted to have a secondary biogenic history. The characteristics include unusually large isotopic separations between successive n-alkane homologues (up to +29‰ PDB) and isotopically heavy CO2 (up to +19.5‰ PDB). Irrespective of geographic location, these anomalous gases are from the shallower accumulations (600–1700 m) where temperatures are lower than 75°C. The secondary biogenic gases are readily distinguishable from thermogenic gases (74% of this sample suite), which should assist in the appraisal of hydrocarbons during exploration where hydrocarbon accumulations are under 2000 m. While dissolution effects may have contributed to the high 13C enrichment of the CO2 component in the secondary biogenic gases, the primary signature of this CO2 is attributed to biochemical fractionation associated with anaerobic degradation and methanogenesis. Correlation between biodegraded oils and biodegraded “dry” gas supports the concept that gas is formed from the bacterial destruction of oil, resulting in “secondary biogenic gas”. Furthermore, the prominence of methanogenic CO2 in these types of accumulations along with some isotopically-depleted methane provides evidence that the processes of methanogenesis and oil biodegradation are linked. It is further proposed that biodegradation of oil proceeds via a complex anaerobic coupling that is integral to and supports methanogenesis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号