首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
海洋学   7篇
  2019年   1篇
  2017年   2篇
  2015年   1篇
  2008年   1篇
  2006年   1篇
  2002年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
This paper describes how simplified auxiliary models—metamodels—can be used to create benchmarks for validating ship manoeuvring simulation models. A metamodel represents ship performance for a limited range of parameters, such as rudder angles and surge velocity. In contrast to traditional system identification methods, metamodels are identified from multiple trial recordings, each containing data on the ship’s inherent dynamics (similar for all trials) and random disturbances such as environmental effects and slightly different loading conditions. Thus, metamodels can be used to obtain these essential data, where simple averaging is not possible. In addition, metamodels are used to represent a ship’s behaviour and not to obtain physical insights into ship dynamics. The experimental trials used for the identification of metamodels can be found in in-service recorded data. After the metamodel is identified, it is used to simulate trials without substantial deviations from the ship state parameters used for the identification. Subsequently, the predictions of the metamodels are compared with the predictions of a tested manoeuvring simulation model. We present two case studies to demonstrate the application of metamodels for moderate turning motions of two ships.  相似文献   
2.
In an attempt to contribute to efforts for a robust and effective numerical tool addressing ship motion in astern seas, this paper presents the development of a coupled non-linear 6-DOF model with frequency dependent coefficients, incorporating memory effects and random waves. A new axes system that allows straightforward combination between seakeeping and manoeuvring, whilst accounting for extreme motions, is proposed. Validation of the numerical model with the results of benchmark tests commissioned by ITTC's Specialist Group on Stability demonstrated qualitative, yet not fully satisfactory agreement between numerical and experimental results in line with other predictive tools. The numerical results indicate that the inclusion of frequency coefficients definitely affects the accuracy of the predictions. In order to enhance further the numerical model and obtain useful information on motion coupling, extensive captive and free running model tests were carried out. Good agreement with the experimental results was achieved. These studies provide convincing evidence of the capability of the developed numerical model to predict the dangerous conditions that a ship could encounter in extreme astern seas. As a result, it could offer new insights towards establishing relationships linking ship behaviour to design, environmental and operational parameters.  相似文献   
3.
We present an experimental investigation of a free-running manoeuvring inland waterway ship at extreme shallow water conditions. Physical tests of zig-zag manoeuvres at two different water depths were performed in model scale and investigated with regards to the effects of limited under-keel clearance. Experimental data comprise results from repeatability studies and may serve for validation of manoeuvring simulations.  相似文献   
4.
The paper addresses the problem of autonomous underwater vehicle (AUV) modelling and parameter estimation as a means to predict the dynamic performance of underwater vehicles and thus provide solid guidelines during their design phase. The use of analytical and semi-empirical (ASE) methods to estimate the hydrodynamic derivatives of a popular class of AUVs is discussed. A comparison is done with the results obtained by using computational fluid dynamics to evaluate the bare hull lift force distribution around a fully submerged body. An application is made to the estimation of the hydrodynamic derivatives of the MAYA AUV, an autonomous underwater vehicle developed under a joint Indian-Portuguese project. The estimates obtained were used to predict the turning diameter of the vehicle during sea trials.  相似文献   
5.
This paper describes how to estimate the uncertainty of manoeuvring sea trial results without performing repeated tests using only a simulation model. The approach is based on the Monte Carlo method of uncertainty propagation. Moreover, the global sensitivity analysis procedure based on variance decomposition is described. As an example, the method is applied to estimate the uncertainty of 10°/10° zigzag overshoot angles and a 20° turning circle advance and tactical diameter for a small research vessel. The estimated uncertainty is compared with corresponding experimental uncertainty assessed from repeated tests. The method can be useful for validation studies and other studies that involve the uncertainty of sea trial results.  相似文献   
6.
The hydrodynamic interaction between an Autonomous Underwater Vehicle (AUV) manoeuvring in close proximity to a larger underwater vehicle can cause rapid changes in the motion of the AUV. This interaction can lead to mission failure and possible vehicle collision. Being self-piloted and comparatively small, an AUV is more susceptible to these interaction effects than the larger body. In an aim to predict the manoeuvring performance of an AUV under the effects of the interaction, the Australian Maritime College (AMC) has conducted a series of computer simulations and captive model experiments. A numerical model was developed to simulate pure sway motion of an AUV at different lateral and longitudinal positions relative to a larger underwater vehicle using Computational Fluid Dynamics (CFDs). The variables investigated include the surge force, sway force and the yaw moment coefficients acting on the AUV due to interaction effects, which were in turn validated against experimental results. A simplified method is presented to obtain the hydrodynamic coefficients of an AUV when operating close to a larger underwater body by transforming the single body hydrodynamic coefficients of the AUV using the steady-state interaction forces. This method is considerably less time consuming than traditional methods. Furthermore, the inverse of this method (i.e. to obtain the steady state interaction force) is also presented to obtain the steady-state interaction force at multiple lateral separations efficiently. Both the CFD model and the simplified methods have been validated against the experimental data and are capable of providing adequate interaction predictions. Such methods are critical for accurate prediction of vehicle performance under varying conditions present in real life.  相似文献   
7.
The problem of simulating the ship manoeuvring motion is studied mainly in connection with manoeuvring simulators. Several possible levels of solution to the problem with different degrees of complexity and accuracy are discussed. It is shown that the structure of the generic manoeuvring mathematical model leads naturally to two basic approaches based respectively on dynamic and purely kinematic prediction models. A simplified but fast dynamic manoeuvring model is proposed as well as two new advances in kinematic prediction methods: a prediction based on current values of velocities and accelerations and a method of anticipating the ship's trajectory in a course changing manoeuvre.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号