首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地球物理   5篇
地质学   2篇
海洋学   2篇
  2016年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有9条查询结果,搜索用时 62 毫秒
1
1.
The Markham River is a small river draining a tropical mountain range with altitudes between 1000 and 3000 m and discharges directly into a submarine canyon, the head of which is at 30 m depth and reaches depths of 500 m only 4 km from the shore. As such, the Markham discharge system serves as a possible analogue for rivers discharging onto margins during low stands of sea-level. Located in a tectonically active area and with high rainfall, sediment supply is high and episodic and is sometimes related to catastrophic mountain landslides. The river has an estimated sediment load of 12 Mt yr−1. Occasionally, high energy flows are generated at the river mouth which is evident from the channel morphology and sediment distribution. Profiles of salinity and suspended sediment concentrations (SSC) show that sediment is dispersed via a plume with components at both the surface, intermediate depth along isopycnal surfaces and near the sea bed. The dispersal pattern of the surface freshwater plume is largely determined by the buoyancy force. The surface plume is very thin with salinity gradients 15 ppt m−1 while a Richardson number greater than unity suggested that the mixing zone is highly stratified. Estimates of the horizontal sediment flux gradient of the surface plume along the estuary axis suggest that about 80% of the sediment discharged is lost from the plume within a distance of 2 km from the river mouth. Particle fall velocities estimated from the vertical flux indicate values less than those of flocculated material. Layers of sediment with SSCs between 500 and 1000 mg l−1 were observed at intermediate depths and near the seabed during periods of both high and intermediate discharge. The mass of sediment in a SSC layer at intermediate depths between 150 and 250 m within the canyon channel was estimated to be equivalent to an average of 2 to 3 days of Markham sediment discharge. SSCs near the seabed of between 250 and 750 mg l−1 suggest that layers of significantly elevated density exist near the seabed, moving under the influence of gravity down steep seabed slopes of the Markham canyon.  相似文献   
2.
The inner shelves of active, energetic continental margins are frequently defined as regions of sediment segregation and fine-sediment bypassing. The Waiapu River, North Island, New Zealand presents an opportunity to study fine-sediment segregation and strata formation in a spatially constrained, highly energetic, aggradational setting, with one of the highest sediment yields on earth. We present evidence that the inner shelf of the Waiapu River plays a significant role in both the fate of fine-grained (<63 μm) riverine sediments and the formation of continental margin stratigraphy. Results obtained from high-resolution interferometric bathymetry and high-frequency seismic mapping ground-truthed by cores show significant stratigraphic spatial variation preserved on the Waiapu inner shelf. This spatial variation is likely controlled by spatially-distinct sediment deposition and resuspension processes as well as antecedent geology. Two distinct depositional regions are interpreted as: (1) surface plume-dominated with partial resuspension, characterized by acoustically transparent seismic reflection profiles and muddy sands; and (2) event-layer dominated, characterized by thickly laminated sediments. A modern-day bathymetric low overlying an observed paleochannel may influence the fate of hyperpycnal flows transiting the shelf via bathymetric steering. Fining-upward sequences found over the entire shelf are interpreted to represent deforestation-induced sedimentation that has overwhelmed the ability of the energetic system to resuspend and segregate fine sediments. We conclude that the primary control on strata formation on the inner shelf of the Waiapu River is local sediment supply.  相似文献   
3.
异重流研究进展综述   总被引:1,自引:0,他引:1  
基于国内外文献分析,从与经典浊流对比的角度,厘定了异重流的概念,探讨了异重流的形成机制、异重岩的结构特征以及异重流发育过程的模式。异重流是一种低密度准稳定的沉积物重力流。异重岩纵向剖面上通常由一个向上变粗和一个向上变细的沉积单元组成。异重流的形成与流体悬浮负载浓度密切相关,它的演化过程受气候条件、构造活动、沉积物供给以及相对海(湖)平面变化的控制,其中,气候条件最为重要。  相似文献   
4.
The in situ records of a cruise in September 1995 off the Huanghe mouth and laboratory measurements indicate that the shear front off the river mouth results from the phase difference between the nearshore and offshore tides and plays significant role in the river-laden sediment dispersal. Two types of shear front, identified from the behaviors of currents inside and outside the shear front, alternate over tidal cycle, each of which lasts for ∼2–3 h. The dispersal patterns of suspended sediment at the stations inside and outside the shear front are distinctly different from each other. In addition, the gravity-driven hyperpycnal flow generated near the mouth is terminated within shallow water due to the barrier effect of shear front. A dispersal pattern of river-laden suspended sediment in the shear frontal zone is proposed to interpret the difference of sediment transport inside and outside the shear front. The fresh and highly turbid river effluents discharge to the sea during ebb tides and are transported northwestwards inside the shear front under the combined impacts of northward ebb currents, down-slope transport of hyperpycnal flow and confining action of shear front; after partially mixing with the ambient seawater the river effluents are then transported southeastwards outside the shear front along the flood currents, causing the intermittent increase in suspended sediment concentration and corresponding decrease in salinity outside the shear front. Over annual time scale the subaqueous slope has a geomorphological response to the ephemeral shear front. Most of the river-laden sediment deposit inside the shear front with a high accumulation rate, while erosion is dominant outside the shear front due to the lack of sediment supply.  相似文献   
5.
Observations of sediment dispersal from the Santa Clara River of southern California during two moderately sized river discharge events suggest that river sediment rapidly formed a negatively buoyant (hyperpycnal) bottom plume along the seabed within hours of peak discharge. An array of acoustic and optical sensors were placed at three stations 1 km from the Santa Clara River mouth in 10-m water depth during January–February 2004. These combined observations suggest that fluid mud concentrations of suspended sediment (>10 g/l) and across-shore gravity currents (∼5 cm/s) were observed in the lower 20–40 cm of the water column 4–6 h after discharge events. Gravity currents were wave dominated, rather than auto-suspending, and appeared to consist of silt-to-clay sized sediment from the river. Sediment mass balances suggest that 25–50% of the discharged river sediment was transported by these hyperpycnal currents. Sediment settling purely by flocs (∼1 mm/s) cannot explain the formation of the observed hyperpycnal plumes, therefore we suggest that some enhanced sediment settling from mixing, convective instabilities, or diverging plumes occurred that would explain the formation of the gravity currents. These combined results provide field evidence that high suspended-sediment concentrations from rivers (>1 g/l) may rapidly form hyperpycnal sediment gravity currents immediately offshore of river mouths, and these pathways can explain a significant portion of the river-margin sediment budget. The fate of this sediment will be strongly influenced by bathymetry, whereas the fate of the remaining sediment will be much more influenced by ocean currents.  相似文献   
6.
Hyperpycnal flows are generated in the marine environment by sediment-laden fresh water discharge into the ocean. They frequently form at river mouths and are also generated in proximal ice-melting settings and are thought to be responsible for transporting a large proportion of suspended river sediment onto and off the continental shelf. Hyperpycnal flows are an example of gravity currents that display reversing buoyancy. This phenomenon is generated by the fresh water interstitial fluid being less dense than that of the ambient seawater. Thus after sufficient particles are sedimented the flow can become positively buoyant and loft, forming a rising plume. Here we present results from physical scale-modelling experiments of lofting gravity currents upon interaction with topography. Topography, in the form of a vertical obstacle, triggered a localised lofting zone on its upstream side. This lofting zone was maintained in a fixed position until the bulk density of the flow had reduced enough to allow lofting along its entire length. The obstructed lofting zone is associated with a sharp increase in deposit thickness. By inference these experimentally established lofting dynamics are applied to improve understanding of the potential for hyperpycnal flows to deposit deep-water massive sands. This study provides a depositional mechanism by which large volumes of sand can be deposited in the absence of traction and the fines removed, leaving thick deposits of structureless sand with a low percentage of mud. This conceptual model for the first time provides a framework by which the geometries of certain deep-water massive sands may be predicted within specific depositional and basinal settings. This is crucial to our understanding of massive sand deposits in modern and ancient turbiditic systems and in the commercial evaluation of hydrocarbon potential of such sedimentary successions.  相似文献   
7.
A turbidity current that contains fresher or otherwise less dense water than its surroundings may initially be denser than the ambient and propagate as a bottom-hugging flow, but later reverse in buoyancy as its bulk density decreases through sedimentation to become lower than that of the ambient seawater. It is proposed that this reversal in buoyancy may be a significant mechanism controlling the structure and facies of turbiditic deposits. Buoyancy reversal followed by lofting may directly affect the relative distribution of fine and coarse material in the deposit, while buoyancy reversal itself may mediate the transformation between dilute and highly-concentrated suspension flows, particularly in distal regions, and thus lead to the formation of complex turbiditic beds: in particular, the generation of distal co-genetic debrites may be expected. Similar transformations occur within dilute pyroclastic density currents, where a mobile, basal concentrated flow, termed a surge-derived pyroclastic flow, develops through rapid sedimentation from the suspended load of the overlying surge. The physical mechanisms involved in these processes are discussed, leading to the proposal of some associated facies models; these are compared with field data from the Northern Apennines, with some striking similarities being noted as well as some differences. On the basis of this discussion, some directions are suggested for future experimental and modelling work on the topic.  相似文献   
8.
Current metre deployments, suspended sediment measurements and surface sediment samples were collected from three locations within distributary channels of the tidally dominated Fly River delta in southern Papua New Guinea. Net bedload transport vectors and the occurrence of elongate tidal bars indicate that mutually evasive ebb- and flood-dominant transport zones occur in each of the distributary channels. Suspended sediment experiments at two locations show a phase relationship between tidal velocity and sediment concentration such that the net suspended sediment flux is directed seaward. Processes that control the export of fluid muds with concentrations up to 10 g l−1 from the distributary channels across the delta front and onto the pro-delta are assessed in relation to the available data. Peak spring tidal current speeds (measured at 100 cm above the bed) drop off from around 100 cm s−1 within the distributary channels to <50 cm s−1 on the delta front. Gravity-driven, 2-m thick, fluid mud layers generated in the distributary channels are estimated to require at least 35 h to traverse the 20-km-wide, low-gradient (2×10−3 degrees) delta front. The velocities of such currents are well below those required for autosuspension. A 1-month time series of suspended sediment concentration and current velocity from the delta front indicates that tidal currents alone are unable to cause significant cross-delta mud transport. Wave-induced resuspension together with tides, storm surge and barotropic return-flow may play a role in maintaining the transport of fine sediment across the delta front, but insufficient data are available at present to make any reliable estimates.  相似文献   
9.
Meteoric-water flux and formation of kaolinite owing to the dissolution of detrital silicates are common features of continental and paralic sandstones. In deep-water marine sandstones, meteoric-water flux is commonly considered unlikely to occur. However, the study of deep-water, marine sandstones of the Shetland–Faroes Basin on the British continental shelf revealed widespread and extensive dissolution and kaolinitization of mica and feldspar grains, which are attributed to meteoric-water flux during a sea-level lowstand. We suggest that this apparently enigmatic meteoric-water flux mechanism is likely to have occurred by hyperpycnal flow. Hyperpycnal flow occurs when river effluent directly transfers into sediment gravity flow, and enters seawater as a mixture of sediment and fresh water. The likelihood for hyperpycnal flows increases at times when rivers and distributary channels reach the shelf edge, and their flows are delivered directly onto the deepwater slope.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号