首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2660篇
  免费   630篇
  国内免费   842篇
测绘学   65篇
大气科学   388篇
地球物理   631篇
地质学   1716篇
海洋学   856篇
天文学   13篇
综合类   123篇
自然地理   340篇
  2024年   13篇
  2023年   34篇
  2022年   110篇
  2021年   98篇
  2020年   150篇
  2019年   153篇
  2018年   140篇
  2017年   154篇
  2016年   147篇
  2015年   169篇
  2014年   225篇
  2013年   204篇
  2012年   171篇
  2011年   293篇
  2010年   163篇
  2009年   194篇
  2008年   167篇
  2007年   181篇
  2006年   219篇
  2005年   173篇
  2004年   152篇
  2003年   121篇
  2002年   102篇
  2001年   72篇
  2000年   64篇
  1999年   60篇
  1998年   56篇
  1997年   68篇
  1996年   63篇
  1995年   49篇
  1994年   38篇
  1993年   30篇
  1992年   30篇
  1991年   16篇
  1990年   18篇
  1989年   8篇
  1988年   9篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1982年   2篇
  1978年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有4132条查询结果,搜索用时 68 毫秒
1.
In rapid socio-economic development,the process of concentration and dispersal of various elements tends to be more dramatic,tremendously influencing the shaping and transformation of the space in metropolitan area.Survey of spatial concentration and decentralization has thus become a basic method in examining metropolitan spatial evolution.In this research,three elements were selected as the essential indicators of the process:demographic density distribu-tion,employment density distribution and business office location.Performance of these elements in Nanjing City was exam-ined historically.As Nanjing City could be regarded as a representative of metropolitan areas in China,its situation large-ly suggestes the general characteristics in similar areas of China.Hence based on the investigation of Nanjing City,four general implications were highlighted.First ,metropolitan areas in China are in a violent process and shift of spatial concentra-tion and decentralization.Second,from now to at least the near future,concentration will continue to be the central fea-ture.Third,the landscape of metropolitan areas basically exhibits a dual structure character.The gap in environmental and ecological qualities among different districts will continue for a long time.Fourth,Central Business District (CBD) is playing an important role in helping to convert the traditionally single-centered city structure into a polycentric one.  相似文献   
2.
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect each giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet’s centrifugal radius (where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, located at rCJ ∼ 15RJ for Jupiter and rCS ∼ 22RS for Saturn) and an optically thin, extended outer disk out to a fraction of the planet’s Roche-lobe (RH), which we choose to be ∼RH/5 (located at ∼150 RJ near the inner irregular satellites for Jupiter, and ∼200RS near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk may result from the nebula gas flowing into the protoplanet during the time of giant planet gap-opening (or cessation of gas accretion). For the sake of specificity, we use a solar composition “minimum mass” model to constrain the gas densities of the inner and outer disks of Jupiter and Saturn (and also Uranus). Our model has Ganymede at a subnebula temperature of ∼250 K and Titan at ∼100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 and 90 K, respectively.Our model has Callisto forming in a time scale ∼106 years, Iapetus in 106-107 years, Ganymede in 103-104 years, and Titan in 104-105 years. Callisto takes much longer to form than Ganymede because it draws materials from the extended, low density portion of the disk; its accretion time scale is set by the inward drift times of satellitesimals with sizes 300-500 km from distances ∼100RJ. This accretion history may be consistent with a partially differentiated Callisto with a ∼300-km clean ice outer shell overlying a mixed ice and rock-metal interior as suggested by Anderson et al. (2001), which may explain the Ganymede-Callisto dichotomy without resorting to fine-tuning poorly known model parameters. It is also possible that particulate matter coupled to the high specific angular momentum gas flowing through the gap after giant planet gap-opening, capture of heliocentric planetesimals by the extended gas disk, or ablation of planetesimals passing through the disk contributes to the solid content of the disk and lengthens the time scale for Callisto’s formation. Furthermore, this model has Hyperion forming just outside Saturn’s centrifugal radius, captured into resonance by proto-Titan in the presence of a strong gas density gradient as proposed by Lee and Peale (2000). While Titan may have taken significantly longer to form than Ganymede, it still formed fast enough that we would expect it to be fully differentiated. In this sense, it is more like Ganymede than like Callisto (Saturn’s analog of Callisto, we expect, is Iapetus). An alternative starved disk model whose satellite accretion time scale for all the regular satellites is set by the feeding of planetesimals or gas from the planet’s Roche-lobe after gap-opening is likely to imply a long accretion time scale for Titan with small quantities of NH3 present, leading to a partially differentiated (Callisto-like) Titan. The Cassini mission may resolve this issue conclusively. We briefly discuss the retention of elements more volatile than H2O as well as other issues that may help to test our model.  相似文献   
3.
Reconnaissance seismic shot in 1971/72 showed a number of well defined seismic anomalies within the East Sengkang Basin which were interpreted as buried reefs. Subsequent fieldwork revealed that Upper Miocene reefs outcropped along the southern margin of the basin. A drilling programme in 1975 and 1976 proved the presence of shallow, gas-bearing, Upper Miocene reefs in the northern part of the basin. Seismic acquisition and drilling during 1981 confirmed the economic significance of these discoveries, with four separate accumulations containing about 750 × 109 cubic feet of dry gas in place at an average depth of 700 m. Kampung Baru is the largest field and contains over half the total, both reservoir quality and gas deliverability are excellent. Deposition in the East Sengkang Basin probably started during the Early Miocene. A sequence of Lower Miocene mudstones and limestones unconformably overlies acoustic basement which consists of Eocene volcanics. During the tectonically active Middle Miocene, deposition was interrupted by two periods of deformation and erosion. Carbonate deposition became established in the Late Miocene with widespread development of platform limestones throughout the East Sengkang Basin. Thick pinnacle reef complexes developed in the areas where reef growth could keep pace with the relative rise in sea level. Most reef growth ceased at the end of the Miocene and subsequent renewed clastic sedimentation covered the irregular limestone surface. Late Pliocene regression culminated in the Holocene with erosion. The Walanae fault zone, part of a major regional sinistral strike-slip system, separates the East and West Sengkang Basins. Both normal and reverse faulting are inferred from seismic data and post Late Pliocene reverse faulting is seen in outcrop.  相似文献   
4.
地震前后垂直形变场动态演化的量化指标   总被引:3,自引:2,他引:1  
提出一种表达垂直形变场动态演化过程的量化指标——区域应变率、应变集中度。在此基础上,对南北地震带各水准监测区近30年的垂直形变资料进行了实际计算.并结合具体震例进行了对比研究。结果表明:量化指标在一定程度上能够反映地震前后形变场的动态演化过程和地壳运动状态,对地震的中长期预报有一定的积极意义。  相似文献   
5.
Two sites of the Deep Sea Drilling Project in contrasting geologic settings provide a basis for comparison of the geochemical conditions associated with marine gas hydrates in continental margin sediments. Site 533 is located at 3191 m water depth on a spit-like extension of the continental rise on a passive margin in the Atlantic Ocean. Site 568, at 2031 m water depth, is in upper slope sediment of an active accretionary margin in the Pacific Ocean. Both sites are characterized by high rates of sedimentation, and the organic carbon contents of these sediments generally exceed 0.5%. Anomalous seismic reflections that transgress sedimentary structures and parallel the seafloor, suggested the presence of gas hydrates at both sites, and, during coring, small samples of gas hydrate were recovered at subbottom depths of 238m (Site 533) and 404 m (Site 568). The principal gaseous components of the gas hydrates wer methane, ethane, and CO2. Residual methane in sediments at both sites usually exceeded 10 mll?1 of wet sediment. Carbon isotopic compositions of methane, CO2, and ΣCO2 followed parallel trends with depth, suggesting that methane formed mainly as a result of biological reduction of oxidized carbon. Salinity of pore waters decreased with depth, a likely result of gas hydrate formation. These geochemical characteristics define some of the conditions associated with the occurrence of gas hydrates formed by in situ processes in continental margin sediments.  相似文献   
6.
Y.C. Minh  W.M. Irvine   《New Astronomy》2006,11(8):594-599
The large-scale structure associated with the 2′N HNCO peak in Sgr B2 [Minh, Y.C., Haikala, L., Hjalmarson, Å., Irvine, W.M., 1998. ApJ 498, 261 (Paper I)] has been investigated. A ring-like morphology of the HNCO emission has been found; this structure may be colliding with the Principal Cloud of Sgr B2. This “HNCO Ring” appears to be centered at (l,b) = (0.7°,−0.07°), with a radius of 5 pc and a total mass of 1.0 × 105 to 1.6 × 106 M. The expansion velocity of the Ring is estimated to be 30–40 km s−1, which gives an expansion time scale of 1.5 × 105 year. The morphology suggests that collision between the Ring and the Principal Cloud may be triggering the massive star formation in the Sgr B2 cloud sequentially, with the latest star formation taking place at the 2′N position. The chemistry related to HNCO is not certain yet, but if it forms mainly via reaction with the evaporated OCN from icy grain mantles, the observed enhancement of the HNCO abundance can be understood as resulting from shocks associated with the collision between the Principal Cloud and the expanding HNCO Ring.  相似文献   
7.
WiththedevelopmentofagricultureandChina'sentryintoWTO,thesituationofsupplyanddemandinmaizemarkethaschangedgreatly.Facingtherelativesurplusofmaizeandtheformationofbuyer'smarket,weshouldfullydeveloprelativeadvantages,carryouttheunevenstrategyofsupportingthesuperior inmaizeproduction andcultivateadvantagedareasofmaize.Theabovestrategicmeasurescanrapidlyim-provetheinternationally competitiveabilityandpro-ductivityofmaizeinJilinProvince,getoutofthea-griculturalpredicamentandmaketheagriculturalde-…  相似文献   
8.
Analysis of Zn, Cu, Pb, Co, Cr, Li, Ni, K, Al, Fe extracted by 1 mol/L HCl or 0.5 mol/LHCl/H_2O_2, showed concentrations of Zn, Cu, Pb, Co, Cr, Fe, Ni were significantly correlated with Li, Al,K, and clay. Two methods are used to indicate the background value of the non-residual phase of elementsin sediments, and are the same as the methods used to indicate the background value of totalconcentrations in sediments. The first method uses correlograms and regression equations,the second usesthe mean element concentrations normalized with grain size. Li, Al, K can be used as reference elements to determine the background value of Zn, Cu, Pb, Co,Cr, Ni, Fe, while the clay concentration's correlation with some extractable concentrations can be used tocalculate the background value of the non-residual phase of elements as a percentage of clay concentrationin the sediments. Based on this study, the concept of using the background value of the non-residualphase of elements to compare the pollution level in differ  相似文献   
9.
随着河南区域化探扫面工作的结束,异常评价是摆在我们面前的当务之急。近年来,随着地质工作的不断深入,我们在异常评价程序及方法上作了一些探索,下面以桐柏县固庙—新集1:20万金银异常评价方法及效果为例,重点加以讨论。  相似文献   
10.
本文通过对成都10个重污染日进行天气学分析,将污染浓度与气象要素进行聚类、研究了重污染日形成原因及污染浓度与气象要素的关系。在此基础上,建立了SO_2、TSP日平均浓度分级预报方程。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号