首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   42篇
  国内免费   31篇
测绘学   11篇
地球物理   109篇
地质学   169篇
海洋学   6篇
综合类   6篇
自然地理   16篇
  2024年   1篇
  2022年   5篇
  2021年   5篇
  2020年   5篇
  2019年   12篇
  2018年   11篇
  2017年   7篇
  2016年   13篇
  2015年   10篇
  2014年   15篇
  2013年   7篇
  2012年   13篇
  2011年   21篇
  2010年   10篇
  2009年   24篇
  2008年   15篇
  2007年   28篇
  2006年   23篇
  2005年   17篇
  2004年   12篇
  2003年   9篇
  2002年   10篇
  2001年   10篇
  2000年   11篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1993年   4篇
排序方式: 共有317条查询结果,搜索用时 15 毫秒
1.
利用地质雷达探测青岛港木质高桩码头承台完整性   总被引:1,自引:0,他引:1  
利用EKKO-100型探地雷达对青岛港木质高桩码头承台完整性进行探测,结合现场钻探、孔内波速测试、岩样分析测试,进一步对码头的工程性状进行了分析和评价。  相似文献   
2.
3.
Slurry pipe jacking was firmly established as a special method for the non-disruptive construction of the underground pipelines of sewage systems. Pipe jacking, in its traditional form, has occasionally been used for short railways, roads, rivers, and other projects. Basically the system involves the pushing or thrusting of concrete pipes into the ground by a number of jacks. In slurry pipe jacking, during the pushing process, mud slurry and lubricant are injected into the face and the over cutting area that is between the concrete pipes and the surrounding soil. Next, the slurry fills voids and the soil stabilizes due to the created slurry cake around the pipes. Fillings also reduce the jacking force or thrust during operation. When the drivage and pushing processes are finished, a mortar injection into the over cutting area is carried out in order to maintain permanent stability of the surrounding soil and the over cutting area. Successful lubrication around the pipes is extremely important in a large diameter slurry pipe jacking operation. Control of lubrication and gaps between pipes and soil can prevent hazards such as surface settlement and increases in thrust. Also, to find voids around the pipes after the jacking process, in order to inject mortar for permanent stabilizing, an investigation around the pipes is necessary. To meet these aims, this paper is concerned with the utilization of known methods such as the GPR (Ground Penetrating Radar) system and borehole camera to maintain control of the over cutting area and lubricant distribution around the pipes during a site investigation. From this point of view, experiments were carried out during a tunnel construction using one of the largest cases of slurry pipe jacking in Fujisawa city, Japan. The advantages and disadvantages of each system were clarified during the tests.  相似文献   
4.
Sedimentary successions and internal structure of the coastal barrier-lagoon system of Boao, eastern Hainan Island were studied through utilizing data from test holes and trenches and ground-penetrating-radar (GPR) profiles. During late Pleistocene, fluvial and delta plains developed over an unevenly eroded bedrock during low sea level stand, followed by the formation of littoral and lagoon facies and defined coastal barrier-lagoon-estuary system during the post-glacial uppermost Pleistocene-lower Holocene eustatic rise of the sea level, and the upper Holocene high stand. GPR results show that Yudaitan, a sandy coastal bar backed by a low-laying land (shoal) just east of the active lagoon, is a continuous, parallel and slightly-wavy reflectors indicating homogeneous sandy or sandy gravel sediments, and inclined reflectors partly caused by progradation and accumulation of beach sand and gravel. Quasi-continuous, hummocky and chaotic reflectors from the shoal of Nangang village correspond to mixed accumula  相似文献   
5.
Sedimentary successions and internal structure of the coastal barrier-lagoon system of Boao, eastern Hainan Island were studied through utilizing data from test holes and trenches and ground-penetrating-radar (GPR) profiles. During late Pleistocene, fluvial and delta plains developed over an unevenly eroded bedrock during low sea level stand, followed by the formation of littoral and lagoon facies and defined coastal barrier-lagoon-estuary system during the post-glacial uppermost Pleistocene-lower Holocene eustatic rise of the sea level, and the upper Holocene high stand. GPR results show that Yudaitan, a sandy coastal bar backed by a low-laying land (shoal) just east of the active lagoon, is a continuous, parallel and slightly-wavy reflectors indicating homogeneous sandy or sandy gravel sediments, and inclined reflectors partly caused by progradation and accumulation of beach sand and gravel. Quasi-continuous, hummocky and chaotic reflectors from the shoal of Nangang village correspond to mixed accumulation of sands and clay. This research indicates the GPR is a non-intrusive, rapid, and economical method for high-resolution profiling of subsurface sediments in sandy gravelly coast.  相似文献   
6.
Electrical, seismic, and electromagnetic methods can be used for noninvasive determination of subsurface physical and chemical properties. In particular, we consider the evaluation of water salinity and the detection of surface contaminants. Most of the relevant properties are represented by electric conductivity, P-wave velocity, and dielectric permittivity. Hence, it is important to obtain relationships between these measurable physical quantities and soil composition, saturation, and frequency. Conductivity in the geoelectric frequency range is obtained with Pride's model for a porous rock. (The model considers salinity and permeability.) White's model of patchy saturation is used to calculate the P-wave velocity and attenuation. Four cases are considered: light nonaqueous phase liquid (LNAPL) pockets in water, dense nonaqueous phase liquid (DNAPL) pockets in water, LNAPL pockets in air, and DNAPL pockets in air. The size of the pockets (or pools), with respect to the signal wavelength, is modeled by the theory. The electromagnetic properties in the GPR frequency range are obtained by using the Hanai–Bruggeman equation for two solids (sand and clay grains) and two fluids (LNAPL or DNAPL in water or air). The Hanai–Bruggeman exponent (1/3 for spherical particles) is used as a fitting parameter and evaluated for a sand/clay mixture saturated with water.Pride's model predicts increasing conductivity for increasing salinity and decreasing permeability. The best-fit exponent of the Hanai–Bruggeman equation for a sand/clay mixture saturated with water is 0.61, indicating that the shape of the grains has a significant influence on the electromagnetic properties. At radar frequencies, it is possible to distinguish between a water-saturated medium and a NAPL-saturated medium, but LNAPL- and DNAPL-saturated media have very similar electromagnetic properties. The type of contaminant can be better distinguished from the acoustic properties. P-wave velocity increases with frequency, and has dissimilar behaviour for wet and dry soils.  相似文献   
7.
盾构隧道壁后注浆效果的雷达探测研究   总被引:15,自引:2,他引:15  
盾构隧道的纵向力学与变形性态研究,尤其是盾尾壁后注浆效果已经引起国内外学者的广泛关注,笔者首次利用探地雷达方法,对上海某盾构隧道盾尾壁后注浆分布进行探测,并进行了初步的分析,结果表明,利用该方法可有效地探测隧道壁后的注浆分布,为隧道纵向力学变形性态的控制提供一定依据。  相似文献   
8.
路用探地雷达的应用技术研究进展   总被引:19,自引:12,他引:19  
有效、无损、快捷、简便是公路检测技术发展的方向,当前国内外先进的浅层勘探技术——路用探地雷达检测,以其无损、快捷以及浅层高分辨率的优势被迅速应用于公路检测。本文对近年来路用探地雷达技术的发展及应用情况进行了介绍,详细分析了探地雷达的工作原理、系统组成结构。就探地雷达在公路建设、维护过程中的应用情况进行了系统总结。  相似文献   
9.
电法勘探的发展和展望   总被引:9,自引:1,他引:9       下载免费PDF全文
何继善 《地球物理学报》1997,40(Z1):308-316
电法勘探在经历了近一个世纪的发展后,其方法理论、仪器设备、野外数据采集、处理和解释等方面都经历了一系列重大变化.本文以方法理论的进展为主线,回顾、展望了目前电法勘探中几个重要而令人关注的研究焦点.这些问题的研究进展将会对21世纪的电法勘探产生深远的影响.  相似文献   
10.
This paper presents the results of the application of the Ground Penetrating Radar (GPR) method, or Georadar, in outlining a zone of contamination due to solid residues at the waste burial site of Rio Claro in the state of São Paulo, SE Brazil. A total of eight GPR profiles with 50- and 100-MHz antennae were surveyed. Six profiles were located within the landfill site and the remaining two were outside. The main objective of the GPR survey was to evaluate the side extension of contamination. A Vertical Electric Sounding (VES) survey was performed at four points within the site in order to investigate the vertical extent of the contamination plume and to define the bottom of the landfill. Two additional VESs were done outside the landfill with the purpose of determining the top of the ground water table and the geoelectric stratigraphy of the background. From the interpretation of the GPR profiles, it was possible to locate the top of the contamination plume and to infer that it was migrating laterally beyond the limits of the waste disposal site. This was observed along the profile situated close to the highway SP-127, which was about 20 m from the limit of the site. The signature of the contaminant appears as a discontinuous reflector that is believed to be a shallow ground water table. The discontinuity is marked by a shadow zone, which is characteristic of conductive contaminant residues. The contamination did not move far enough to reach a sugar cane plantation located at approximately 100 m from the border of the site. In the regions free from contamination, the ground water table was mapped at approximately 10 m of depth, and it was characterized by a strong and continuous reflector. The radar signal penetrated deep enough and enabled the identification of a second reflector at approximately 14 m deep, interpreted as the contact between the Rio Claro and the Corumbataí formations. The contact is marked by the presence of gravel characterized by ferruginous concretes, which cause the strong amplitude reflection in the GPR profile. Within the landfill site, the quantitative interpretation of the VES results showed the contamination zone. The base of the landfill varies between 11 and 15 m deep. Outside the landfill site, the VES results showed no indication of contamination and allowed the determination of the top of the ground water table and the contact between the Rio Claro and the Corumbataí formations. The results of GPR and VES showed a good agreement and the integrated interpretations were supported by local geology and information from several boreholes, about 17 m depth, on average. The bottom of the landfill reaches a maximum of 14.5 m depth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号