首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
地质学   3篇
天文学   1篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
  2015年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
宇宙黎明和再电离时期探测是目前宇宙学最前沿科学研究方向之一.对这一时期的直接探测只能依赖于观测来自这一时期红移后的中性氢21 cm信号,其3种主要探测方式之一是21 cm信号全天总功率测量.在此回顾已有和正在计划中的探测宇宙黎明和再电离时期的低频全天总功率测量实验及其进展,包括地面射电望远镜如BIGHORNS1、EDGES2、LACE3、LEDA4、MIST5、REACH6、SARAS7 3、SCI-HI8、PRIZM9以及空间低频总功率相关实验如DARE10、DAPPER11、FARSIDE12、鸿蒙计划.其中, EDGES实验是目前唯一声称观测到疑似宇宙黎明信号的实验,然而其实验结果与标准宇宙学模型(Λ Cold Dark Matter,ΛCDM)有不符之处.如果该探测结果被证实,那么这将是人类第1次...  相似文献   
2.
Ceres, a nearly 1000-km diameter body located in the Solar System’s main asteroid belt, has been classified under many categories: planet, comet, asteroid, minor planet and, presently, dwarf planet. No matter what the designation, Ceres has experienced major planetary processes. Its evolution has been controlled by water, making it a most unusual, interesting and accessible inner Solar System object that can inform the evolution of outer Solar System moons and other dwarf planets. Early telescopic observations suggested a hydroxylated mineralogy similar to carbonaceous chondrite meteorites and a size and mass indicating a bulk density that implied a water content of 17?27 wt%. Thermodynamic modeling of Ceres’ evolution indicated that thermal aqueous evolution likely occurred. The Dawn Mission produced a huge increase in our understanding of Ceres, confirming but vastly extending the early knowledge. Dawn, carrying multispectral cameras, a visible-infrared imaging spectrometer and a nuclear spectrometer, orbited Ceres between 2015–2018 (after orbiting Vesta) at a number of different altitudes, ultimately reaching 35 km from the surface at periapsis. Observations of almost the entire surface and gravity field mapping revealed multiple geological and internal features attributed to the effects of water. The surface displays cryovolcanic-like and flow structures, exposed phyllosilicates, carbonates, evaporites and water ice. The subsurface shows partial differentiation, decreasing viscosity with depth, and lateral density heterogeneity. Ceres appears to be geologically active today and possesses liquid water/brine pockets or even an extended liquid layer in the interior, confirming an “Ocean World” designation in today’s vernacular.  相似文献   
3.
More than 200 years after its discovery, asteroid (4) Vesta is thought to be the parent body for the howardite, eucrite and diogenite (HED) meteorites. The Dawn spacecraft spent ∼14 months in orbit around this largest, intact differentiated asteroid to study its internal structure, geology, mineralogy and chemistry. Carrying a suite of instruments that included two framing cameras, a visible-near infrared spectrometer, and a gamma-ray and neutron detector, coupled with radio tracking for gravity, Dawn revealed a geologically and geochemically complex world. A constrained core size of ∼110–130 km radius is consistent with predictions based on differentiation models for the HED meteorite parent body. Hubble Space Telescope observations had already shown that Vesta is scarred by a south polar basin comparable in diameter to that of the asteroid itself. Dawn showed that the south polar Rheasilvia basin dominates the asteroid, with a central uplift that rivals the large shield volcanoes of the Solar System in height. An older basin, Veneneia, partially underlies Rheasilvia. A series of graben-like equatorial and northern troughs were created during these massive impact events 1–2 Ga ago. These events also resurfaced much of the southern hemisphere and exposed deeper-seated diogenitic lithologies. Although the mineralogy and geochemistry vary across the surface for rock-forming elements and minerals, the range is small, suggesting that impact processes have efficiently homogenized the surface of Vesta at scales observed by the instruments on the Dawn spacecraft. The distribution of hydrogen is correlated with surface age, which likely results from the admixture of exogenic carbonaceous chondrites with Vesta's basaltic surface. Clasts of such material are observed within the surficial howardite meteorites in our collections. Dawn significantly strengthened the link between (4) Vesta and the HED meteorites, but the pervasive mixing, lack of a convincing and widespread detection of olivine, and poorly-constrained lateral and vertical extents of units leaves unanswered the central question of whether Vesta once had a magma ocean. Dawn is continuing its mission to the presumed ice-rich asteroid (1) Ceres.  相似文献   
4.
Quantifying the amounts of various igneous lithologies in Vesta’s crust allows the estimation of petrologic ratios that describe the asteroid’s global differentiation and subsequent magmatic history. The eucrite:diogenite (Euc:Diog) ratio measures the relative proportions of mafic and ultramafic components. The intrusive:extrusive (I:E) ratio assesses the effectiveness of magma ascent and eruption. We estimate these ratios by counting numbers and masses of eucrites, cumulate eucrites, and diogenites in the world’s meteorite collections, and by calculating their proportions as components of crustal polymict breccias (howardites) using chemical mixing diagrams and petrologic mapping of multiple thin sections. The latter two methods yield a Euc:Diog ratio of ∼2:1, although meteorite numbers and masses give slightly higher ratios. Surface lithologic maps compiled from spectra of Dawn spacecraft instruments (VIR and GRaND) yield Euc:Diog ratios that bracket estimates of Euc:Diog from the meteorites. The I:E ratios from HEDs lie between 0.5–2.1:1, due to uncertainties in identifying cumulate eucrite. Gravity mapping of Vesta by the Dawn spacecraft supports the existence of diogenite plutons in the crust. Quantifying the proportion of high-density diogenitic crust in the gravity map yields I:E ratios of 0.8-1:2:1, values which are bracketed by calculations based on HEDs. The I:E ratio for Vesta is lower than for Earth and Mars, consistent with physical modeling of asteroid-size bodies. Nevertheless, it indicates a significant role for pluton emplacement during the formation of Vesta’s crust. These results are inconsistent with simple differentiation models that produce the crust by crystallization of a global magma ocean, unless residual melts are extracted into crustal magma chambers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号