首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   55篇
  国内免费   59篇
测绘学   13篇
大气科学   34篇
地球物理   105篇
地质学   153篇
海洋学   68篇
天文学   23篇
综合类   10篇
自然地理   30篇
  2023年   2篇
  2022年   7篇
  2021年   7篇
  2020年   10篇
  2019年   13篇
  2018年   5篇
  2017年   9篇
  2016年   16篇
  2015年   8篇
  2014年   17篇
  2013年   20篇
  2012年   11篇
  2011年   30篇
  2010年   22篇
  2009年   24篇
  2008年   11篇
  2007年   27篇
  2006年   26篇
  2005年   15篇
  2004年   21篇
  2003年   16篇
  2002年   17篇
  2001年   15篇
  2000年   15篇
  1999年   20篇
  1998年   11篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1994年   6篇
  1993年   6篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
排序方式: 共有436条查询结果,搜索用时 31 毫秒
1.
《山西地震综合数据处理系统》是遵循《国家地震局数据库技术规范》,以PDP-11/23~+小型机与IBM/PC联机为硬件支撑,以网状型数据库为核心,含前期处理、库管理、数据检索、科学计算、分析会商5个子系统的较大型应用软件系统。具有对数据进行收集、录入、预处理、存储、管理、加工及应用等功能。整个系统通过总控菜单程序实现了异种机间上百个模块的调度,使查询-处理一体化。该系统把地震数据库、日常监测数据处理、专家地震预报系统有机地衔接于一体,可直接服务于地震科研和震情会商。该系统的建设是山西省重大科技攻关项目,也是国家地震局的合同制项目。  相似文献   
2.
本文讨论了北黄海11个柱状岩芯样的颗粒物(<0.063mm)中重金属的分布,采用统计学方法对Cu,Ph,Zn和Cd进行态性检验,用柱样稳定段(拐点以下)作为背景段,获得重金属环境背景值.  相似文献   
3.
运城盆地11 kaBP以来气候环境变迁与湖面波动   总被引:7,自引:0,他引:7  
通过黄土区湖泊沉积研究来恢复古气候、古环境,是对黄土区古气候、古环境研究的补充和检验。通过山西运城盆地硝地湖泊沉积物的多环境代用指标分析,结合史料记载,探讨了该地区11kaBP以来古气候演化和湖面波动的历史。结果表明,该地区存在YD(Younger Dryas)事件,进入全新世后气候有显著的趋势,最高湿润度发生在7.88-5.15和5kaBP后,气候逐渐变干,湖面波动与气候波动相关,全新世早期湖面开始上升,湖泊扩张,5kaBP后湖泊萎缩,盐类结晶析出。  相似文献   
4.
气相色谱指纹法在海上油污染源鉴别中的应用   总被引:4,自引:0,他引:4  
通过一个具体案例,探讨了气相色谱指纹法在海上油污染源鉴别中的应用。该鉴别方法基于样品的正构烷烃气相色谱指纹分析,选择既能表征油种固有特性,又受风化影响较小的正十七烷(n-C17)、正十八烷(n-C18)、姥鲛烷(phy)、植烷(phy)和正二十烷(n-C20)等特征烷烃作为判据,可信度大,而且整个操作流程短(一般不超过半天),较简便易行。  相似文献   
5.
A. Coradini  G. Magni 《Icarus》1984,59(3):376-391
A detailed computation on the equilibrium structure of an accretion disk around Saturn from which the regular satellites presumably originated is reported. Such a disk is the predecessor of the self-dissipating disk that is formed when the mass infall stops (Cassen and Moosman, 1981, Icarus48, 353–376). When determining the disk structure local energy balance was assumed. Convention was taken into account by introducing local energy dissipation and, in an approximate manner, sonic convection. Changes in the disk structure were investigated by varying the free parameters, i.e., the external flux from both the protosun and the protoplanet, the abundance of dust and the strength of turbulence. It has been verified that the external energy flux does not play an important role in the evolution of the disk structure. Models characterized by either longer times (?3 103 year) or a noticeable depletion of condensable elements (10?2 times less than the solar value) have a total mass of the order of 0.34?0.1 times the mass of the regular satellites increased by the mass of the light elements. Low turbulence models (Reynolds critical number Re1 = 150) are characterized approximately by a total mass twice as large the mass of the regular satellites. All the studied models present a temperature distribution that allows the condensation of iron, silicate, and, in the outer regions, ice grains. All models but the one with 10?2 of the solar value of condensable elements are characterized by a wide convective region that contains the formation zone of the regular satellites.  相似文献   
6.
We have collected about 150 magnetotelluric (MT) soundings in northeastern Nevada in the region of the Ruby Mountains metamorphic core complex uplift and southern Carlin mineral trend, in an effort to illuminate controls on core complex evolution and deposition of world-class gold deposits. The region has experienced a broad range of tectonic events including several periods of compressional and extensional deformation, which have contributed to the total expression of electrical resistivity. Most of the soundings reside in three east–west profiles across increasing degrees of core uplift to the north (Bald Mountain, Harrison Pass, and Secret Pass latitudes). One short cross-line was also taken to assess an east–west structure to the north of the northern profile. Model resistivity cross-sections were derived from the MT data using a 2-D inversion algorithm, which damps departures of model parameters from an a priori structure. Geological interpretation of the resistivity combines previous seismic, potential field and isotope models, structural and petrological models for regional compression and extension, and detailed structural/stratigraphic interpretations incorporating drilling for petroleum and mineral exploration. To first order, the resistivity structure is one of a moderately conductive, Phanerozoic sedimentary section fundamentally disrupted by intrusion and uplift of resistive crystalline rocks. Late Devonian and early Mississippian shales of the Pilot and Chainman Formations together form an important conductive marker sequence in the stratigraphy and show pronounced increases in conductance (conductivity–thickness product) from east to west. These increases are attributed to graphitization caused by Elko–Sevier era compressional shear deformation and possibly by intrusive heating. The resistive crystalline central massifs adjoin the host stratigraphy across crustal-scale, steeply dipping fault zones. The zones provide pathways to the lower crust for heterogeneous, upper crustal induced, electric current flow. Resistive core complex crust appears steeply bounded under the middle of the neighboring grabens and not to deepen at a shallow angle to arbitrary distances to the west. The numerous crustal breaks imaged with MT may contribute to the low effective elastic thickness (Te) estimated regionally for the Great Basin and exemplify the mid-crustal, steeply dipping slip zones in which major earthquakes nucleate. An east–west oriented conductor in the crystalline upper crust spans the East Humboldt Range and northern Ruby Mountains. The conductor may be related to nearby graphitic metasediments, with possible alteration by middle Tertiary magmatism. Lower crustal resistivity everywhere under the profiles is low and appears quasi one-dimensional. It is consistent with a low rock porosity (<1 vol.%) containing hypersaline brines and possible water-undersaturated crustal melts, residual to the mostly Miocene regional extension. The resistivity expression of the southern Carlin Trend (CT) in the Pinon Range is not a simple lineament but rather a family of structures attributed to Eocene intrusion, stratal deformation, and alteration/graphitization. Substantial reactivation or overprinting by core complex uplift or Basin–Range extensional events seems likely. We concur with others that the Carlin Trend may result in part from overlap of the large Eocene Northeast Nevada Volcanic Field with Precambrian–Paleozoic deep-water clastic source rocks thickening abruptly to the west of the Pinon Range, and projecting to the north–northwest.  相似文献   
7.
Satellite-data allows the magnetic field produced by the dynamo within the Earth’s core to be imaged with much more accuracy than previously possible with only ground-based data. Changes in this magnetic field can in turn be used to make some inferences about the core surface flow responsible for them. In this paper, we investigate the improvement brought to core flow computation by new satellite-data based core magnetic field models. It is shown that the main limitation now encountered is no longer the (now high) accuracy of those models, but the “non-modelled secular variation” produced by interaction of the non-resolvable small scales of the core flow with the core field, and by interaction of the (partly) resolvable large scales of the core flow with the small scales of the core field unfortunately masked by the crustal field. We show how this non-modelled secular variation can be taken into account to recover the largest scales of the core flow in a consistent way. We also investigate the uncertainties this introduces in core flows computed with the help of the frozen-flux and tangentially geostrophic assumptions. It turns out that flows with much more medium and small scales than previously thought are needed to explain the satellite-data-based core magnetic field models. It also turns out that a significant fraction of this flow unfortunately happens to be non-recoverable (being either “non-resolvable” because too small-scale, or “invisible”, because in the kernel of the inverse method) even though it produces the detectable “non-modelled secular variation”. Applying this to the Magsat (1980) to Ørsted (2000) field changes leads us to conclude that a flow involving at least strong retrograde vortices below the Atlantic Hemisphere, some less-resolved prograde vortices below the Pacific Hemisphere, and some poorly resolved (and partly non-resolvable) polar vortices, is needed to explain the 1980-2000 satellite-era average secular variation. The characteristics of the fraction of the secular variation left unexplained by this flow are also discussed.  相似文献   
8.
Twenty-four new zircon and apatite fission track ages from the Getic and Danubian nappes in the South Carpathians are discussed in the light of a compilation of published fission track data. A total of 101 fission track ages indicates that the Getic nappes are generally characterized by Cretaceous zircon and apatite fission track ages, indicating cooling to near-surface temperatures of these units immediately following Late Cretaceous orogeny.The age distribution of the Danubian nappes, presently outcropping in the Danubian window below the Getic nappes, depends on the position with respect to the Cerna-Jiu fault. Eocene and Oligocene zircon and apatite central ages from the part of the Danubian core complex situated southeast of this fault monitor mid-Tertiary tectonic exhumation in the footwall of the Getic detachment, while zircon fission track data from northwest of this fault indicate that slow cooling started during the Latest Cretaceous. The change from extension (Getic detachment) to strike-slip dominated tectonics along the curved Cerna-Jiu fault allowed for further exhumation on the concave side of this strike-slip fault, while exhumation ceased on the convex side. The available fission track data consistently indicate that the change to fast cooling associated with tectonic denudation by core complex formation did not occur before Late Eocene times, i.e. long after the cessation of Late Cretaceous thrusting.Core complex formation in the Danubian window is related to a larger-scale scenario that is characterized by the NNW-directed translation, followed by a 90° clockwise rotation of the Tisza-Dacia “block” due to roll-back of the Carpathian embayment. This led to a complex pattern of strain partitioning within the Tisza-Dacia “block” adjacent to the western tip of the rigid Moesian platform. Our results suggest that the invasion of these southernmost parts of Tisza-Dacia started before the Late Eocene, i.e. significantly before the onset of Miocene-age rollback and associated extension in the Pannonian basin.  相似文献   
9.
Integrated hydrological models are usually calibrated against observations of river discharge and piezometric head in groundwater aquifers. Calibration of such models against spatially distributed observations of river water level can potentially improve their reliability and predictive skill. However, traditional river gauging stations are normally spaced too far apart to capture spatial patterns in the water surface, whereas spaceborne observations have limited spatial and temporal resolution. Unmanned aerial vehicles can retrieve river water level measurements, providing (a) high spatial resolution; (b) spatially continuous profiles along or across the water body, and (c) flexible timing of sampling. A semisynthetic study was conducted to analyse the value of the new unmanned aerial vehicle‐borne datatype for improving hydrological models, in particular estimates of groundwater–surface water (GW–SW) interaction. Mølleåen River (Denmark) and its catchment were simulated using an integrated hydrological model (MIKE 11–MIKE SHE). Calibration against distributed surface water levels using the Differential Evolution Adaptive Metropolis algorithm demonstrated a significant improvement in estimating spatial patterns and time series of GW–SW interaction. After water level calibration, the sharpness of the estimates of GW–SW time series improves by ~50% and root mean square error decreases by ~75% compared with those of a model calibrated against discharge only.  相似文献   
10.
This paper introduces a unique industrial configuration that has emerged in Beijing, where three economic clusters in the biomedical industry, originally established as industrial/research parks, have developed parallel to each other. This configuration of multiple co-located clusters of the same industry, which has not been discussed before, raises the question of whether the industrial/research parks are competing for the same resources, or whether they are complementary to each other and can collectively be viewed as a new type of industrial configuration. The paper conceptualizes a framework of multiple clusters in mega-city regions that distinguishes between collaborating and competing clusters and presents initial empirical evidence for the Beijing case. As such, this research aims to unravel the phenomenon of multiple clusters in mega-city regions and to understand the complex spatial interrelationships that exist within and beyond multiple co-located clusters in the same industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号