首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地质学   2篇
海洋学   3篇
自然地理   1篇
  2020年   1篇
  2017年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The East African Rift System (EARS) exerted a major influence on river drainage basins and regional climate of east Africa during the Cenozoic. Recent studies have highlighted an offshore branch of the EARS in the western Indian Ocean, where the Kerimbas Graben and the Davie Ridge represent its sea floor expression. To date, a clear picture of the impact and timing of this EARS offshore branch on the continental margin of the western Indian Ocean, and associated sediment dispersal pathways, is still missing. This study presents new evidence for four giant canyons along the northern portion of the Davie Ridge offshore Tanzania. Seismic and multibeam bathymetric data highlight that the southernmost three canyons are now inactive, supra-elevated relative to the adjacent sea floor of the Kerimbas Graben and disconnected from the modern slope systems offshore the Rovuma and Rufiji River deltas. Regional correlation of dated seismic horizons, integrated with well data and sediment samples, proves that the tectonic activity driving the uplift of the Davie Ridge in this area has started during the middle-upper Miocene and is still ongoing, as suggested by the presence of fault escarpments at the sea floor and by the location and magnitude of recent earthquakes. Our findings contribute to placing the Kerimbas Graben and the Davie Ridge offshore Tanzania in the regional geodynamic context of the western Indian Ocean and show how the tectonics of the offshore branch of the EARS modified the physiography of the margin, re-routing the deep-water drainage network since the middle Miocene. Future studies are needed to understand the influence of changing sea floor topography on the western Indian Ocean circulation and to evaluate the potential of the EARS offshore tectonics in generating tsunamigenic events.  相似文献   
2.
Deposit-feeding holothurians often dominate the megafauna in bathyal deep-sea settings, in terms of both abundance and biomass. Molpadia musculus is particularly abundant at about 3400 m depth in the Nazaré Canyon on the NE Atlantic Continental Margin. However, these high abundances are unusual for burrowing species at this depth. The objective of this research was to understand the reasons of the massive occurrence of these molpadiid holothurians in the Nazaré Canyon. To address this question we investigated possible trophic interactions with bacteria at sites where the organic content of the sediment was different (Setúbal and Cascais Canyons, NE Atlantic Continental Margin). The molecular fingerprinting technique of Denaturing Gradient Gel Electrophoresis (DGGE) with band sequencing, combined with non-metric multi-dimensional scaling and statistical analyses, was used to compare the bacterial community diversity in canyon sediments and holothurian gut contents. Our results suggest that M. musculus does not need to develop a specialised gut bacterial community to aid digestion where the sediment is rich in organic matter (Nazaré Canyon); in contrast, such a community may be developed where the sediment is poorer in organic matter (Cascais Canyon).  相似文献   
3.
The distribution of megabenthic epifauna (invertebrates) in the Balearic Basin (western Mediterranean) has been analyzed at depths between 427 and 2265 m after compiling samplings performed in 1985–1992 and 2007–2008 with an OTSB-14 bottom trawl. 84 epibenthic taxa of invertebrates (excluded decapod crustaceans) were collected. Epibenthic assemblages were organized in five groups (n-MDS analyses) as a function of increasing depth: upper slope assemblage, U, hauls between 427 and 660 m; middle slope assemblages M1 and M2, hauls between 663–876 m and 864–1412 m, respectively; lower slope assemblages L1 and L2, hauls between 1488–1789 m and 1798–2265 m, respectively). We found significant differences in assemblage composition between all depth-adjacent pairs of groups. Trends in the distribution of biomass vs. depth and within assemblages varied when hauls taken over insular were compared to those over mainland slopes. Over insular slopes we found (n-MDS) only four distinct depth assemblages, with significant differences between all depth-adjacent group pairs, except between L1 and L2. Over the mainland slope, two peaks of biomass situated at U (427–660 m) and at L1 (1488–1789 m) were clearly identified, attributable to the echinoid Brissopsis lyrifera and holothurian Molpadia musculus at U and to the synallactid holothurian Mesothuria intestinalis at L1. The distribution of biomass vs. depth on insular slopes did not follow this pattern, showing no significant biomass peak below 1000 m and a total biomass an order of magnitude lower than adjacent to the mainland. After compiling available environmental data over the mainland slope off Barcelona, we found coincidence between the peak biomass of Mesothuria intestinalis and: i) a significant increase of labile OM (%OrgC, C/N, hydrolizable aminoacids–EHAA, and the EHAA/THAA-total hydrolizable aminoacids-ratio) over 1600 m; and ii) an increase of turbidity and T at 1500–1600 m in February 2008. We suggest that such OM inputs must likely be associated to the formation of nepheloid layers close to submarine canyons, probably associated with oceanographic processes in deep water masses in the area. This would explain why aggregations of M. intestinalis were linked to the mainland part of the Balearic basin, with highest densities located south of canyons. If hotspots of biomass as cited here for M. intestinalis are regulated by factors such as river inputs, both natural climatic changes (e.g. changes in rainfall regimes) and human impact (e.g. river damming) may affect deep-Mediterranean communities below 1000 m.  相似文献   
4.
Interpretation of a grid of high resolution seismic profiles from the offshore eastern part of the Benin (Dahomey) basin in southwestern Nigeria area permitted the identification of cyclic events of cut and fill associated with the Avon canyon. Seismic stratigraphic analysis was carried out to evaluate the canyon morphology, origin and evolution. At least three generations of ancient submarine canyons and a newly formed submarine canyon have been identified. Seismic reflection parameters of the ancient canyons are characterized by transparent to slightly transparent, continuous to slightly discontinuous, high to moderate amplitude and parallel to sub-parallel reflections. Locally, high amplitude and chaotic reflections were observed. The reflection configurations consist of regular oblique, chaotic oblique, progradational and parallel to sub-parallel types. These seismic reflection characteristics are probably due to variable sedimentation processes within the canyons, which were affected by mass wasting. Canyon morphological features include step-wise and spoon-shaped wall development, deep valley incision, a V-shaped valley, similar orientation in the southeast direction, and simple to complex erosion features in the axial floor. The canyons have a composite origin, caused partly by lowering of the sea level probably associated with the formation of the Antarctic Ice Sheet about 30 Ma ago and partly by complex sedimentary processes. Regional correlation with geological ages using the reflectors show that the canyons cut through the Cretaceous and lower Tertiary sediments while the sedimentary infill of the canyon is predominantly Miocene and younger. Gravity-driven depositional processes, downward excavation by down slope sediment flows, mass wasting from the canyon walls and variation in terrigenous sediment supply have played significant roles in maintaining the canyons. These canyons were probably conduits for sediment transport to deep-waters in the Gulf of Guinea during their period of formation.  相似文献   
5.
In the last few decades, seafloor imagery systems have drastically changed our vision of a mostly regular and depositional marine landscape, evidencing how erosive and mass-wasting processes are widespread in the marine environments, with particular reference to geologically-active areas. Most of the previous studies have focused on the characterization of these features, whereas a very few ones have tried to estimate what is the extent and order of magnitude of erosion rates in these areas. In this paper, we show several examples from some of the most geologically-active margins off Southern Italy aimed to a) quantify the spatial extent of such processes, b) better understand the role of submarine erosion in the morphogenesis of the coastal sector, and c) try to roughly estimate the order of magnitude of erosion rates in these areas. The results are impressive, with mass-wasting features widespread from coast down to −2600, affecting from the 52% up to 97% of the whole continental slope. Because of the narrow or totally lacking shelves in these areas, mass-wasting processes often occur close to the coast and match embayment of the coast, so indicating a key role in the morphogenesis of coastal sector, with significant implication on the related geohazard. Finally, based on a morphological approach integrated by available stratigraphic constraints we have roughly estimated average erosion rates in these areas, ranging from (at least) some mm/year to a few cm/year, i.e., some hundreds of meters up to kilometers eroded in each eustatic cycle. Despite the large uncertainties of these estimates as well as their spatial and temporal variability in response to regional and local factors, the obtained values are very high and they should be considered for future model of margin evolution, source-to-sink computation and marine/coastal geohazard assessment.  相似文献   
6.
The deeply dissected Southwest Grand Banks Slope offshore the Grand Banks of Newfoundland was investigated using multiple data sets in order to determine how canyons and intercanyon ridges developed and what sedimentary processes acted on glacially influenced slopes. The canyons are a product of Quaternary ice‐related processes that operated along the margin, such as ice stream outwash and proglacial plume fallout. Three types of canyon are defined based on their dimensions, axial sedimentary processes and the location of the canyon head. There are canyons formed by glacial outwash with aggradational and erosional floors, and canyons formed on the slope by retrogressive failure. The steep, narrow intercanyon ridges that separate the canyons are composite morphological features formed by a complex history of sediment aggradation and degradation. Ridge aggradation occurred as a result of mid to late Quaternary background sedimentation (proglacial plume fallout and hemipelagic settling) and turbidite deposition. Intercanyon ridge degradation was caused mainly by sediment removal due to local slump failures and erosive sediment gravity flows. Levée‐like deposits are present as little as 15 km from the shelf break. At 30 km from the shelf, turbidity currents spilled over a 400 m high ridge and reconfined in a canyon formed by retrogressive failure, where a thalweg channel was developed. These observations imply that turbidity currents evolved rapidly in this slope‐proximal environment and attained flow depths of hundreds of metres over distances of a few tens of kilometres, suggesting turbulent subglacial outwash from tunnel valleys as the principal turbidity current‐generating mechanism.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号