首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11180篇
  免费   1875篇
  国内免费   1944篇
测绘学   2819篇
大气科学   953篇
地球物理   2871篇
地质学   5158篇
海洋学   1239篇
天文学   416篇
综合类   674篇
自然地理   869篇
  2024年   58篇
  2023年   173篇
  2022年   380篇
  2021年   465篇
  2020年   492篇
  2019年   511篇
  2018年   425篇
  2017年   616篇
  2016年   600篇
  2015年   573篇
  2014年   775篇
  2013年   828篇
  2012年   719篇
  2011年   755篇
  2010年   575篇
  2009年   761篇
  2008年   827篇
  2007年   749篇
  2006年   723篇
  2005年   641篇
  2004年   561篇
  2003年   413篇
  2002年   440篇
  2001年   305篇
  2000年   306篇
  1999年   237篇
  1998年   212篇
  1997年   164篇
  1996年   116篇
  1995年   120篇
  1994年   104篇
  1993年   88篇
  1992年   76篇
  1991年   41篇
  1990年   45篇
  1989年   22篇
  1988年   29篇
  1987年   16篇
  1986年   12篇
  1985年   6篇
  1984年   5篇
  1983年   2篇
  1982年   3篇
  1980年   3篇
  1979年   5篇
  1978年   6篇
  1977年   3篇
  1954年   5篇
  1900年   3篇
  1880年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
2.
A FORTRAN program, consistent with the commercially available finite element (FE) code ABAQUS, is developed based on a three-dimensional (3D) linear elastic brittle damage constitutive model with two damage criteria. To consider the heterogeneity of rock, the developed FORTRAN program is used to set the stiffness and strength properties of each element of the FE model following a Weibull distribution function. The reliability of the program is assessed against available experimental results for granite cylindrical specimens with a throughgoing, flat and inclined fissure. The calibration procedure of the material parameters is explained in detail, and it is shown that the compressive to tensile strength ratio can have a substantial influence on the failure response of the specimens. Numerical simulations are conducted for models with different levels of heterogeneity. The results show a smaller load bearing capacity for models with less homogeneity, representing gradual coalescence of fully damaged elements forming throughout the models during loading. The maximum load bearing capacity is studied for various combinations of inclination angles of two centrally aligned, throughgoing and flat fissures of equal length embedded in cylindrical models under uniaxial and multiaxial loading conditions. The key role of the compressive to tensile strength ratio is highlighted by repeating certain simulations with a lower compressive to tensile strength ratio. It is proven that the peak loads of the rock models with sufficiently small compressive to tensile strength ratios containing two throughgoing fissures of equal length are similar, provided that the minimum inclination angles of the models are the same. The results are presented and discussed with respect to the existing experimental findings in the literature, suggesting that the numerical model applied in this study can provide useful insight into the failure behaviour of rock-like materials.  相似文献   
3.
Flow through rough fractures is investigated numerically in order to assess the validity of the local cubic law for different fracture geometries. Two‐dimensional channels with sinusoidal walls having different geometrical properties defined by the aperture, the amplitude, and the wavelength of the walls' corrugations, the corrugations asymmetry, and the phase shift between the two walls are considered to represent different fracture geometries. First, it is analytically shown that the hydraulic aperture clearly deviates from the mean aperture when the walls' roughness, the phase shift, and/or the asymmetry between the fracture walls are relatively high. The continuity and the Navier–Stokes equations are then solved by means of the finite element method and the numerical solutions compared to the theoretical predictions of the local cubic law. Reynolds numbers ranging from 0.066 to 66.66 are investigated so as to focus more particularly on the effect of flow inertial effects on the validity of the local cubic law. For low Reynolds number, typically less than 15, the local cubic law properly describes the fracture flow, especially when the fracture walls have small corrugation amplitudes. For Reynolds numbers higher than 15, the local cubic law is valid under the conditions that the fracture presents a low aspect ratio, small corrugation amplitudes, and a moderate phase lag between its walls.  相似文献   
4.
This paper studies dynamic crack propagation by employing the distinct lattice spring model (DLSM) and 3‐dimensional (3D) printing technique. A damage‐plasticity model was developed and implemented in a 2D DLSM. Applicability of the damage‐plasticity DLSM was verified against analytical elastic solutions and experimental results for crack propagation. As a physical analogy, dynamic fracturing tests were conducted on 3D printed specimens using the split Hopkinson pressure bar. The dynamic stress intensity factors were recorded, and crack paths were captured by a high‐speed camera. A parametric study was conducted to find the influences of the parameters on cracking behaviors, including initial and peak fracture toughness, crack speed, and crack patterns. Finally, selection of parameters for the damage‐plasticity model was determined through the comparison of numerical predictions and the experimentally observed cracking features.  相似文献   
5.
A coupling procedure between a climate model of intermediate complexity (CLIMBER-2.3) and a 3-dimensional thermo-mechanical ice-sheet model (GREMLINS) has been elaborated. The resulting coupled model describes the evolution of atmosphere, ocean, biosphere, cryosphere and their mutual interactions. It is used to perform several simulations of the Last Deglaciation period to identify the physical mechanisms at the origin of the deglaciation process. Our baseline experiment, forced by insolation and atmospheric CO2, produces almost complete deglaciation of past northern hemisphere continental ice sheets, although ice remains over the Cordilleran region at the end of the simulation and also in Alaska and Eastern Siberia. Results clearly demonstrate that, in this study, the melting of the North American ice sheet is critically dependent on the deglaciation of Fennoscandia through processes involving switches of the thermohaline circulation from a glacial mode to a modern one and associated warming of the northern hemisphere. A set of sensitivity experiments has been carried out to test the relative importance of both forcing factors and internal processes in the deglaciation mechanism. It appears that the deglaciation is primarily driven by insolation. However, the atmospheric CO2 modulates the timing of the melting of the Fennoscandian ice sheet, and results relative to Laurentide illustrate the existence of threshold CO2 values, that can be translated in terms of critical temperature, below which the deglaciation is impeded. Finally, we show that the beginning of the deglaciation process of the Laurentide ice sheet may be influenced by the time at which the shift of the thermohaline circulation from one mode to the other occurs.  相似文献   
6.
We report the first detection, with Chandra , of X-ray emission from the jet of the powerful narrow-line radio galaxy 3C 346. X-rays are detected from the bright radio and optical knot at which the jet apparently bends by approximately 70°. The Chandra observation also reveals a bright galaxy-scale atmosphere within the previously known cluster and provides a good X-ray spectrum for the bright core of 3C 346. The X-ray emission from the knot is synchrotron radiation, as seen in lower-power sources. In common with these sources, there is evidence of morphological differences between the radio/optical and X-ray structures, and the spectrum is inconsistent with a one-component continuous-injection model. We suggest that the X-ray-bright knot is associated with a strong oblique shock in a moderately relativistic, light jet, at ∼ 20° to the line of sight, and that this shock is caused by the jet interacting with the wake in the cluster medium behind the companion galaxy of 3C 346. The general jet curvature can result from pressure gradients in the cluster atmosphere.  相似文献   
7.
Although the Songnen Plain in the northeastern China was developed relatively late in the temperate zone of the world, its eco-environment has changed greatly. This paper analyzes the changes of land cover and the rates and trends ofdesertification during the past 100 years in the Songnen Plain. According to the macroscopic analysis, we find that the eco-environment in the plain has reached to the threshold of catastrophic change since the 1950s. The Thorn Needle Catastrophic Model was used to determine and validate this conclusion. Human activities, including large-scale construction projects, such as huge dams and dikes, and excessive grazing were the primary factors contributing to regional eco-environmental catastrophe. And irrational reclamation of the wilderness also affected the eco-environmental change. The results reveal the complex human-land interactions.  相似文献   
8.
Chandra X-ray Observatory observations of the powerful, peculiar radio galaxy 3C 123 have resulted in an X-ray detection of the bright eastern hotspot, with a 1-keV flux density of ∼5 nJy. The X-ray flux and spectrum of the hotspot are consistent with the X-rays being inverse-Compton scattering of radio synchrotron photons by the population of electrons responsible for the radio emission ('synchrotron self-Compton emission') if the magnetic fields in the hotspot are close to their equipartition values. 3C 123 is thus the third radio galaxy to show X-ray emission from a hotspot which is consistent with being in equipartition. Chandra also detects emission from a moderately rich cluster surrounding 3C 123, with L X(2–10 keV)=2×1044 erg s−1 and kT ∼5 keV, and absorbed emission from the active nucleus, with an inferred intrinsic column density of 1.7×1022 cm−2 and an intrinsic 2–10 keV luminosity of 1044 erg s−1.  相似文献   
9.
Based on the Intensive Field Campaign(IFC-1)data of Boreal Ecosystem-Atmosphere Study(BOREAS).a three-dimensional meso-β scale model is used to simulate the effect of boreal forests onthe lower atmosphere.A fine horizontal resolution of 2 km×2 km is used in order to distinguish thevegetative heterogeneity in the boreal region.A total of 20×25 grid points cover the entire sub-modeling area in BOREAS' South Study Area(SSA).The ecosystem types and their coverage ineach grid square are extracted from the North American Land Cover Characteristics Data Base(NALCCD)generated by the U.S.Geographical Survey(USGS)and the University of Nebraska-Lincoln(UNL).The topography of the study area is taken from the Digital Elevation Map(DEM)of USGS.The model outputs include the components of the energy balance budget within the canopyand at the ground.the turbulence parameters in the atmospheric boundary layer and the wind.temperature and humidity profiles extending up to a height of 1500 m.In addition to the fine timeand spatial step,the unique feature of the present model is the incorporation of both dynamic andbiological effects of the Boreal forest into the model parameterization scheme.The model resultscompare favorably with BOREAS' IFC-1 data in 1994 when the forest was in the luxuriant growingperiod.  相似文献   
10.
We have observed the energetic binary Cygnus X-3 in both quiescent and flaring states between 4 and 16 μm using the ISO satellite. We find that the quiescent source shows the thermal free–free spectrum typical of a hot, fast stellar wind, such as from a massive helium star. The quiescent mass-loss rate arising from a spherically symmetric, non-accelerating wind is found to be in the range (0.4–2.9)×10−4 M yr−1, consistent with other infrared and radio observations, but considerably larger than the 10−5 M yr−1 deduced from both the orbital change and the X-ray column density. There is rapid, large-amplitude flaring at 4.5 and 11.5 μm at the same time as enhanced radio and X-ray activity, with the infrared spectrum apparently becoming flatter in the flaring state. We believe that non-thermal processes are operating, perhaps along with enhanced thermal emission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号