首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   2篇
大气科学   1篇
海洋学   1篇
  2014年   1篇
  2010年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Three Landsat TM imageries (taken on 18 May 1987, 4 August 1998 and 28 July 2007) were used as the data source to identify the spatial and temporal variations of the suspended sediment concentration (SSC) in surface waters of the Changjiang Estuary. Atmospheric correction was carried out to determine the water-leaving reflectance using the FLAASH module. A regression equation between surveyed SSC and suspended sediment index was chosen to retrieve the SSC from the Landsat TM images. In addition, tidal harmonic analysis was performed to calculate tidal conditions corresponding to the acquisition time of satellite images. The results show that the SSC spatial patterns are similar to the in situ observation results, which show the highest SSC in the region of turbidity maximum zone in the Changjiang Estuary. For the period of 1987 to 2007, the SSC pattern is controlled mainly by tidal dynamic conditions and wind speeds, rather than sediment discharges from the river.  相似文献   
2.
The objective of the present study was to better understand the impacts of the additional sources of nitrous acid (HONO) on visibility, which is an aspect not considered in current air quality models. Simulations of HONO contributions to visibility over the North China Plain (NCP) during August 2007 using the fully coupled Weather Research and Forecasting/Chemistry (WRF/Chem) model were performed, including three additional HONO sources: (1) the reaction of photo-excited nitrogen dioxide (NO~) with water vapor; (2) the NO2 heterogeneous reaction on aerosol surfaces; and (3) HONO emissions. The model generally reproduced the spatial patterns and diurnal variations of visibility over the NCP well. When the additional HONO sources were included in the simulations, the visibility was occasionally decreased by 20%-30% (3-4 km) in local urban areas of the NCP. Monthly-mean concentrations of NO3, NH+, SO]- and PM2.5 were increased by 20%-52% (3-11μg m-3), 10%-38%, 6%-10%, and 6%-11% (9-17 μg m-3), respectively; and in urban areas, monthly-mean accumulation- mode number concentrations (AMNC) and surface concentrations of aerosols were enhanced by 15%-20% and 10%-20%, respectively. Overall, the results suggest that increases in concentrations of PM2.5, its hydrophilic components, and AMNC, are key factors for visibility degradation. A proposed conceptual model for the impacts of additional HONO sources on visibility also suggests that visibility estimation should consider the heterogeneous reaction on aerosol surfaces and the enhanced atmospheric oxidation capacity due to additional HONO sources, especially in areas with high mass concentrations of NOx and aerosols.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号