首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3056篇
  免费   404篇
  国内免费   258篇
测绘学   490篇
大气科学   238篇
地球物理   766篇
地质学   696篇
海洋学   130篇
天文学   8篇
综合类   199篇
自然地理   1191篇
  2024年   14篇
  2023年   38篇
  2022年   111篇
  2021年   171篇
  2020年   167篇
  2019年   167篇
  2018年   150篇
  2017年   146篇
  2016年   148篇
  2015年   160篇
  2014年   186篇
  2013年   264篇
  2012年   157篇
  2011年   159篇
  2010年   135篇
  2009年   154篇
  2008年   151篇
  2007年   182篇
  2006年   171篇
  2005年   145篇
  2004年   129篇
  2003年   111篇
  2002年   104篇
  2001年   74篇
  2000年   53篇
  1999年   43篇
  1998年   44篇
  1997年   38篇
  1996年   29篇
  1995年   19篇
  1994年   28篇
  1993年   10篇
  1992年   16篇
  1991年   7篇
  1990年   8篇
  1989年   4篇
  1988年   7篇
  1987年   6篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1972年   1篇
排序方式: 共有3718条查询结果,搜索用时 15 毫秒
1.
The 33 086 ha mixed land use Fall Creek watershed in upstate New York is part of the Great Lakes drainage system. Results from more than 3500 water samples are available in a data set that compiles flow data and measurements of various water quality analytes collected between 1972 and 1995 in all seasons and under all flow regimes in Fall Creek and its tributaries. Data is freely accessible at https://ecommons.cornell.edu/handle/1813/8148 and includes measurements of suspended solids, pH, alkalinity, calcium, magnesium, potassium, sodium, chloride, nitrate nitrogen (NO3-N), sulphate sulphur (SO4-S), phosphorus (P) fractions molybdate reactive P (MRP) and total dissolved P (TDP), percent P in sediment, and ammonium nitrogen (NH4-N). Methods, sub-watershed areas, and coordinates for sampling sites are also included. The work represented in this data set has made important scientific contributions to understanding of hydrological and biogeochemical processes that influence loading in mixed use watersheds and that have an impact on algal productivity in receiving water bodies. In addition, the work has been foundational for important regulatory and management decisions in the region.  相似文献   
2.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
3.
Wetlands represent one of the world's most biodiverse and threatened ecosystem types and were diminished globally by about two‐thirds in the 20th century. There is continuing decline in wetland quantity and function due to infilling and other human activities. In addition, with climate change, warmer temperatures and changes in precipitation and evapotranspiration are reducing wetland surface and groundwater supplies, further altering wetland hydrology and vegetation. There is a need to automate inventory and monitoring of wetlands, and as a study system, we investigated the Shepard Slough wetlands complex, which includes numerous wetlands in urban, suburban, and agricultural zones in the prairie pothole region of southern Alberta, Canada. Here, wetlands are generally confined to depressions in the undulating terrain, challenging wetlands inventory and monitoring. This study applied threshold and frequency analysis routines for high‐resolution, single‐polarization (HH) RADARSAT‐2, synthetic aperture radar mapping. This enabled a growing season surface water extent hyroperiod‐based wetland classification, which can support water and wetland resource monitoring. This 3‐year study demonstrated synthetic aperture radar‐derived multitemporal open‐water masks provided an effective index of wetland permanence class, with overall accuracies of 89% to 95% compared with optical validation data, and RMSE between 0.2 and 0.7 m between model and field validation data. This allowed for characterizing the distribution and dynamics of 4 marsh wetlands hydroperiod classes, temporary, seasonal, semipermanent, and permanent, and mapping of the sequential vegetation bands that included emergent, obligate wetland, facultative wetland, and upland plant communities. Hydroperiod variation and surface water extent were found to be influenced by short‐term rainfall events in both wet and dry years. Seasonal hydroperiods in wetlands were particularly variable if there was a decrease in the temporary or semipermanent hydroperiod classes. In years with extreme rain events, the temporary wetlands especially increased relative to longer lasting wetlands (84% in 2015 with significant rainfall events, compared with 42% otherwise).  相似文献   
4.
Urban development significantly alters the landscape by introducing widespread impervious surfaces, which quickly convey surface run‐off to streams via stormwater sewer networks, resulting in “flashy” hydrological responses. Here, we present the inadequacies of using raster‐based digital elevation models and flow‐direction algorithms to delineate large and highly urbanized watersheds and propose an alternative approach that accounts for the influence of anthropogenically modified land cover. We use a semi‐automated approach that incorporates conventional drainage networks into overland flow paths and define the maximal run‐off contributing area. In this approach, stormwater pipes are clustered according to their slope attributes, which define flow direction. Land areas drained by each cluster and contributing (or exporting) flow to a topographically delineated catchment were determined. These land masses were subsequently added or removed from the catchment, modifying both the shape and the size. Our results in a highly urbanized Toronto, Canada, area watershed indicate a moderate net increase in the directly connected watershed area by 3% relative to a topographically forced method; however, differences across three smaller scale subcatchments are greater. Compared to topographic delineation, the directly connected watershed areas of both the upper and middle subcatchments decrease by 5% and 8%, respectively, whereas the lower subcatchment area increases by 15%. This is directly related to subsurface storm sewer pipes that cross topographic boundaries. When directly connected subcatchment area is plotted against total streamflow and flashiness indices using this method, the coefficients of variation are greater (0.93 to 0.97) compared to the use of digital elevation model‐derived subcatchment areas (0.78 to 0.85). The accurate identification of watershed and subcatchment boundaries should incorporate ancillary data such as stormwater sewer networks and retention basin drainage areas to reduce water budget errors in urban systems.  相似文献   
5.
A synthesis of Holocene pollen records from the Tibetan Plateau shows the history of vegetation and climatic changes during the Holocene. Palynological evidences from 24 cores/sections have been compiled and show that the vegetation shifted from subalpine/alpine conifer forest to subalpine/alpine evergreen sclerophyllous forest in the southeastern part of the plateau; from alpine steppe to alpine desert in the central, western and northern part; and from alpine meadow to alpine steppe in the eastern and southern plateau regions during the Holocene. These records show that increases in precipitation began about 9 ka from the southeast, and a wide ranging level of increased humidity developed over the entire of the plateau around 8-7 ka, followed by aridity from 6 ka and a continuous drying over the plateau after 4-3 ka. The changes in Holocene climates of the plateau can be interpreted qualitatively as a response to orbital forcing and its secondary effects on the Indian Monsoon which expanded northwards  相似文献   
6.
A growing body of evidence implies that the concept of 'treeless tundra' in eastern and northern Europe fails to explain the rapidity of Lateglacial and postglacial tree population dynamics of the region, yet the knowledge of the geographic locations and shifting of tree populations is fragmentary. Pollen, stomata and plant macrofossil stratigraphies from Lake Kurjanovas in the poorly studied eastern Baltic region provide improved knowledge of ranges of north‐eastern European trees during the Lateglacial and subsequent plant population responses to the abrupt climatic changes of the Lateglacial/Holocene transition. The results prove the Lateglacial presence of tree populations (Betula, Pinus and Picea) in the eastern Baltic region. Particularly relevant is the stomatal and plant macrofossil evidence showing the local presence of reproductive Picea populations during the Younger Dryas stadial at 12 900–11 700 cal. a BP, occurring along with Dryas octopetala and arctic herbs, indicating semi‐open vegetation. The spread of PinusBetula forest at ca. 14 400 cal. a BP, the rise of Picea at ca. 12 800 cal. a BP and the re‐establishment of PinusBetula forest at ca. 11 700 cal. a BP within a span of centuries further suggest strikingly rapid, climate‐driven ecosystem changes rather than gradual plant succession on a newly deglaciated land. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
7.
To drive an atmospheric general circulation model (AGCM), land surface boundary conditions like albedo and morphological roughness, which depend on the vegetation type present, have to be prescribed. For the late Quaternary there are some data available, but they are still sparse. Here an artificial neural network approach to assimilate these paleovegetation data is investigated. In contrast to a biome model the relation between climatological parameters and vegetation type is not based on biological knowledge but estimated from the available vegetation data and the AGCM climatology at the corresponding locations. For a test application, a data set for the modern vegetation reduced to the amount of data available for the Holocene climate optimum (about 6000 years B.P.) is used. From this, the neural network is able to reconstruct the complete global vegetation with a kappa value of 0.56. The most pronounced errors occur in Australia and South America in areas corresponding to large data gaps.  相似文献   
8.
High‐resolution pollen, plant macrofossil and sedimentary analyses from early Holocene lacustrine sediments on the Faroe Islands have detected a significant vegetation perturbation suggesting a rapid change in climate between ca. 10 380 cal. yr BP and the Saksunarvatn ash (10 240±60 cal. yr BP). This episode may be synchronous with the decline in δ18O values in the Greenland ice‐cores. It also correlates with a short, cold event detected in marine cores from the North Atlantic that has been ascribed to a weakening of thermohaline circulation associated with the sudden drainage of Lake Agassiz into the northwest Atlantic, or, alternatively, a period with distinctly decreased solar forcing. The vegetation sequence begins at ca. 10 500 cal. yr BP with a succession from tundra to shrub‐tundra and increasing lake productivity. Rapid population increases of aquatic plants suggest high summer temperatures between 10 450 and 10 380 cal. yr BP. High pollen percentages, concentrations and influx of Betula, Juniperus and Salix together with macrofossil leaves indicate shrub growth around the site during the initial phases of vegetation colonisation. Unstable conditions followed ca. 10 380 cal. yr BP that changed both the upland vegetation and the aquatic plant communities. A decrease in percentage values of shrub pollen is recorded, with replacement of both aquatics and herbaceous plants by pioneer plant communities. An increase in total pollen accumulation rates not seen in the concentration data suggests increased sediment delivery. The catchment changes are consistent with less seasonal, moister conditions. Subsequent climatic amelioration reinitiated a warmth‐driven succession and catchment stabilisation, but retained high precipitation levels influencing the composition of the post‐event communities. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
9.
浙江省小流域山洪灾害临界雨量确定方法分析   总被引:12,自引:2,他引:10  
叶勇  王振宇  范波芹 《水文》2008,28(1):56-58
小流域山洪灾害具有突发性,预测预警难度较大.本文结合浙江省小流域山洪灾害防御的实践经验,研究提出了以水位反推法计算临界雨量,简单实用,具有较好的实践价值和推广意义.  相似文献   
10.
The present paper describes observations, analyses and models of salt-marsh channel network and vegetation patterns with the aim of contributing to the development of predictive models of ecological and morphological co-evolution. Existing and new observations are described, with particular emphasis on remote sensing and ancillary field surveys, which are shown to allow reliable, accurate and repeatable quantitative characterizations of landform and vegetation properties over the spatial scales of interest. The observed channel network morphological characters are then used as the basis and validation of models describing the emergence of channel network and vegetation spatial patterns. In particular, with reference to observations performed in the Venice Lagoon, the note describes: (i) new, 2-cm resolution, characterizations of channel network geometry obtained from “proximal sensing” photographic observations; (ii) the reliable quantitative maps of salt-marsh vegetation which may be retrieved from hyperspectral remote sensing data and field ancillary observations; (iii) a synthesis of recent and new analyses of the statistical properties of vegetation and landform spatial organization, that may be inferred from the maps so derived; (iv) recent and new conceptual and quantitative ecological and geomorphic models developed and validated by remote-sensing and field observations. A coherent observational and theoretical eco-morphodynamic framework is then proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号