首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   412篇
  免费   51篇
  国内免费   39篇
测绘学   1篇
地球物理   118篇
地质学   226篇
海洋学   23篇
天文学   1篇
综合类   14篇
自然地理   119篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   8篇
  2018年   7篇
  2017年   6篇
  2016年   12篇
  2015年   9篇
  2014年   6篇
  2013年   23篇
  2012年   9篇
  2011年   9篇
  2010年   16篇
  2009年   23篇
  2008年   36篇
  2007年   29篇
  2006年   19篇
  2005年   27篇
  2004年   34篇
  2003年   22篇
  2002年   22篇
  2001年   14篇
  2000年   20篇
  1999年   19篇
  1998年   12篇
  1997年   9篇
  1996年   10篇
  1995年   10篇
  1994年   13篇
  1993年   10篇
  1992年   15篇
  1991年   7篇
  1990年   5篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有502条查询结果,搜索用时 46 毫秒
1.
长诏断裂带垂直运动与地震关系初探   总被引:5,自引:0,他引:5  
利用跨断层短水准资料分析了长诏断裂带断层活动特征,结果表明:长诏断裂带总体活动性质基本相同.分时段活动性质有所不同。断层各段多数以压性逆断为主,不同于历史地质考察结果。此外,长诏断裂带各断裂都具有分段活动特点。  相似文献   
2.
Seismic reflection profiles and long- and medium-range sidescan sonar were used to investigate a salt diapir complex and area of slope instability near the base of the Continental Slope off North Carolina. Within the area of investigation three diapirs are bounded on their upslope side by a scarp 60 m high and 50 km long. The slope above the scarp is characterized by a series of shallow rotational normal faults. The bottom below the scarp is furrowed by slide tracks, which were probably carved by large blocks that broke off the scarp face and slid downslope leaving rubble and scree lobes.Extensive slumping in this area appears to be a result of uplift and faulting associated with salt intrusion, which has fractured and oversteepened the slope leading to instability and failure. Sharply defined slide tracks suggest that slope failure above the breached diapir complex is a continuing process, in contrast to much of the surrounding slope area where few instability features were observed.  相似文献   
3.
位于华南褶皱带南缘的右江盆地,其发展可分为两个不同的阶段。它的轮廓和结构,与NW向及NE向同沉积断裂关系密切。盆地内的沉积物,分别由特征不同的非补偿性和补偿性沉积相组成两个双层结构。盆地内火山活动发育,也明显的分为两个阶段。海西期,古特提斯洋的发展使哀牢山洋盆开裂,导致了右江地区在拉张应力条件下出现若干NW向裂陷带,这时的盆地具有大陆边缘裂谷特点。东吴运动后开始的印支期,区域应力条件发生变化。滨大平洋构造的发生,使盆地轮廓和结构发生明显变化,与此同时开始的哀牢山洋盆向NE方向的俯冲消减作用,使盆地在新的挤压条件下再次发生张裂和拗陷。进入了弧后盆地发展阶段。印支期末,盆地封闭。  相似文献   
4.
5.
以首都圈地区现今活动断层上近20年的位移测量资料为依据,用二维线弹性有限元对该区断层的活动特征进行了拟合,并结合有关资料讨论了该区的地震危险性。结果表明:1977-1986年间该区主压应力优势方位与华北较一致,约为N45°-80°E;1986-1990年其主压应力方向向北偏转,约为N5°-60°E;1990年至现在其主压应力又向东偏转,角度大于第一阶段,约为N80°-95°E。该区的张家口-延庆一带近期有发生中强震的可能;丰镇-阳高-大同地区和凉城-古营盘地区应力较高,也应引起注意。  相似文献   
6.
Sea Beam and Deep-Tow were used in a tectonic investigation of the fast-spreading (151 mm yr-1) East Pacific Rise (EPR) at 19°30 S. Detailed surveys were conducted at the EPR axis and at the Brunhes/Matuyama magnetic reversal boundary, while four long traverses (the longest 96 km) surveyed the rise flanks. Faulting accounts for the vast majority of the relief. Both inward and outward facing fault scarps appear in almost equal numbers, and they form the horsts and grabens which compose the abyssal hills. This mechanism for abyssal hill formation differs from that observed at slow and intermediate spreading rates where abyssal hills are formed by back-tilted inward facing normal faults or by volcanic bow-forms. At 19°30 S, systematic back tilting of fault blocks is not observed, and volcanic constructional relief is a short wavelength signal (less than a few hundred meters) superimposed upon the dominant faulted structure (wavelength 2–8 km). Active faulting is confined to within approximately 5–8 km of the rise axis. In terms of frequency, more faulting occurs at fast spreading rates than at slow. The half extension rate due to faulting is 4.1 mm yr-1 at 19°30 S versus 1.6 mm yr-1 in the FAMOUS area on the Mid-Atlantic Ridge (MAR). Both spreading and horizontal extension are asymmetric at 19°30 S, and both are greater on the east flank of the rise axis. The fault density observed at 19°30 S is not constant, and zones with very high fault density follow zones with very little faulting. Three mechanisms are proposed which might account for these observations. In the first, faults are buried episodically by massive eruptions which flow more than 5–8 km from the spreading axis, beyond the outer boundary of the active fault zone. This is the least favored mechanism as there is no evidence that lavas which flow that far off axis are sufficiently thick to bury 50–150 m high fault scarps. In the second mechanism, the rate of faulting is reduced during major episodes of volcanism due to changes in the near axis thermal structure associated with swelling of the axial magma chamber. Thus the variation in fault spacing is caused by alternate episodes of faulting and volcanism. In the third mechanism, the rate of faulting may be constant (down to a time scale of decades), but the locus of faulting shifts relative to the axis. A master fault forms near the axis and takes up most of the strain release until the fault or fault set is transported into lithosphere which is sufficiently thick so that the faults become locked. At this point, the locus of faulting shifts to the thinnest, weakest lithosphere near the axis, and the cycle repeats.  相似文献   
7.
Supergene nickel deposits of New Caledonia that have been formed in the Neogene by weathering of obducted ultramafic rocks are controlled by fracture development. The relationship of tropical weathering and tectonic structures, faults and tension gashes, have been investigated in order to determine whether fractures play a passive role only, as previously thought; or alternatively, if brittle tectonics was acting together with alteration. Observation of time‐relationship, textures, and mineralogy of various fracture fills and fault gouges shows that active faulting has played a prominent role not only in facilitating drainage and providing room for synkinematic crystallization of supergene nickel silicate, but also in mobilizing already formed sparse nickel ore, producing the very high grade ore nicknamed “green gold”.  相似文献   
8.
Among the second-order effects on friction the most important are those of variable normal stress and of slip velocity. Velocity weakening, which is usually considered the source of the stick-slip instability in rock friction, has been observed in velocity stepping experiments with Westerly granite. The friction change, , was –0.01 to –0.008 for a tenfold velocity increase. Using normal closure measurements, we observed dilation upon each increase in sliding rate. We also observed, for the first time, time-dependent closure between surfaces during static loading. The dilation that occurred during the velocity stepping experiment was found to be that expected from the static time-dependent closure phenomenon. This change in closure was used to predict friction change with an elastic contact model. The calculated friction change which results from a change in contact area and asperity interlocking, is in good agreement with the observed velocity dependence of steady-state friction. Variable normal stress during sliding has two effects, first in creating new partial slip contacts and locking some existing fully sliding contacts and second in increasing interlocking, for instance when normal load is suddenly increased. As a result, a transient change in friction occurs upon a sudden change in normal load.  相似文献   
9.
We present the results of a multidisciplinary study of the Ms = 6.2, 1995, June 15, Aigion earthquake (Gulf of Corinth, Greece). In order to constrain the rupture geometry, we used all available data from seismology (local, regional and teleseismic records of the mainshock and of aftershocks), geodesy (GPS and SAR interferometry), and tectonics. Part of these data were obtained during a postseismic field study consisting of the surveying of 24 GPS points, the temporary installation of 20 digital seismometers, and a detailed field investigation for surface fault break. The Aigion fault was the only fault onland which showed detectable breaks (< 4 cm). We relocated the mainshock hypocenter at 10 km in depth, 38 ° 21.7 N, 22 ° 12.0 E, about 15 km NNE to the damaged city of Aigion. The modeling of teleseismic P and SH waves provides a seismic moment Mo = 3.4 1018 N.m, a well constrained focal mechanism (strike 277 °, dip 33 °, rake – 77°), at a centroidal depth of 7.2 km, consistent with the NEIC and the revised Harvard determinations. It thus involved almost pure normal faulting in agreement with the tectonics of the Gulf. The horizontal GPS displacements corrected for the opening of the gulf (1.5 cm/year) show a well-resolved 7 cm northward motion above the hypocenter, which eliminates the possibility of a steep, south-dipping fault plane. Fitting the S-wave polarization at SERG, 10 km from the epicenter, with a 33° northward dipping plane implies a hypocentral depth greater than 10 km. The north dipping fault plane provides a poor fit to the GPS data at the southern points when a homogeneous elastic half-space is considered: the best fit geodetic model is obtained for a fault shallower by 2 km, assuming the same dip. We show with a two-dimensional model that this depth difference is probably due to the distorting effect of the shallow, low-rigidity sediments of the gulf and of its edges. The best-fit fault model, with dimensions 9 km E–W and 15 km along dip, and a 0.87 m uniform slip, fits InSAR data covering the time of the earthquake. The fault is located about 10 km east-northeast to the Aigion fault, whose surface breaks thus appears as secondary features. The rupture lasted 4 to 5 s, propagating southward and upward on a fault probably outcropping offshore, near the southern edge of the gulf. In the shallowest 4 km, the slip – if any – has not exceeded about 30 cm. This geometry implies a large directivity effect in Aigion, in agreement with the accelerogram aig which shows a short duration (2 s) and a large amplitude (0.5 g) of the direct S acceleration. This unusual low-angle normal faulting may have been favoured by a low-friction, high pore pressure fault zone, or by a rotation of the stress directions due to the possible dip towards the south of the brittle-ductile transition zone. This fault cannot be responsible for the long term topography of the rift, which is controlled by larger normal faults with larger dip angles, implying either a seldom, or a more recently started activity of such low angle faults in the central part of the rift.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号