首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   4篇
  国内免费   2篇
地质学   20篇
自然地理   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有21条查询结果,搜索用时 274 毫秒
1.
Abstract In granulite facies metapelitic rocks in the Musgrave Complex, central Australia, reaction between S1 garnet and sillimanite involves the development in S2 of both garnet + cordierite + hercynitic spinel + biotite and hercynitic spinel + cordierite + sillimanite + biotite. The S2 assemblages occur either in coronas and symplectites, mainly around garnet, or, in rocks in which S2 is more strongly developed, as recrystallized assemblages. Ignoring the presence of biotite and ilmenite, the mineral textures can be accounted for qualitatively by a consideration of the model system FeO-MgO-Al2O3-SiO2 (FMAS); the textural relationships accord with decompression accompanying the change from S1 to S2. However, since biotite and ilmenite are involved in the assemblages, the parageneses are better accounted for in terms of equilibria in the expanded model system K2O-FeO-MgO-Al2O3-SiO2-H2-TiO2-Fe2O3 (KFMASHTO), i.e. AFM + TiO2+ Fe2O3. The coronas reflect the tectonic unroofing of at least part of the Musgrave Complex from peak S1 conditions of about 8 kbar to S2 conditions of about 4 kbar.  相似文献   
2.
Abstract Part of the augite in the Artfjället gabbro consists of symplectitic intergrowths between augite and blebs or lamellae of orthopyroxene. Mineral compositions are consistent with formation of these symplectites by exsolution of orthopyroxene from magmatic augite at a temperature of ca . 900–1000°C. The microstructures indicate that the exsolution mechanism is discontinuous precipitation, whereby the boundary of an augite grain sweeps through a neighbouring augite, leaving the symplectite in its wake. The formation of this symplectitic augite is catalysed by the presence of an intergranular water-rich fluid phase, which promotes grain boundary mobility.  相似文献   
3.
A symplectite of pyrite and magnetite in the massive sulphide ore of the Mashan mine,Anhui Province,is interpreted to have been formed by their replacing earlier pyrrhotite.The compositions of pyrrhotite,pyrite and magnetite related to this texture are given by electron microprobe analysis.Such a texture is likely to be formed when the ore-forming system reaches the three-phase point of pyrrhotite,pyrite and magnetite from the pyrrhotite stability field.The very small probability for the system to reach this point could be used to account for the rare occurrence of such symplectite in natural ores.  相似文献   
4.
Gneiss domes are commonly cored by quartzofeldspathic rocks that provide little information about the pressure–temperature–fluid history of the domes. Three northern Cordilleran migmatite domes (Thor‐Odin and Valhalla/Passmore, British Columbia, Canada; Okanogan, Washington, USA), however, contain Mg–Al‐rich orthoamphibole‐cordierite gneiss as layers and lenses that record metamorphic conditions and pressure–temperature (PT) path information not preserved in the host migmatite. These Mg–Al‐rich rocks are therefore a valuable archive of metamorphic conditions during dome evolution, although refractory rocks such as these commonly contain reaction textures that may complicate the calculation of metamorphic conditions. In the Okanogan dome, Mg–Al‐rich layers are part of the Tunk Creek unit, which occurs at the periphery of an underlying migmatite domain. Bulk compositional layers (mm‐ to m‐scale) consist of gedrite‐dominated, hornblende‐dominated and biotite‐bearing layers that contain variable amounts of gedrite, hornblende, anorthite, cordierite, spinel, sapphirine, corundum, kyanite, biotite and/or staurolite. The presence of different compositional layers (some with reaction textures, some without) allows systematic analysis of metamorphic history by a combined petrographic and phase equilibrium analysis. Gedrite‐dominated layers containing relict kyanite preserve evidence of the highest‐P conditions; symplectitic and coronal reaction textures around kyanite indicate decompression at high temperature. Gedrite‐dominated layers lacking these reaction textures contain layers of sapphirine and spinel in apparent textural equilibrium and record a later high‐T–low‐P part of the path. Phase equilibria (pseudosection) analysis for layers that lack reaction textures indicates metamorphic conditions of 720–750 °C at a range of pressures (>8 to <4 kbar) following decompression. Elevated crustal temperatures and concordant structural fabrics in the Tunk Creek unit and underlying migmatite domain suggest that the calculated PT conditions recorded in Tunk Creek rocks were coeval with anatexis, extension, and dome formation in Palaeocene–Eocene time. In contrast to orthoamphibole‐cordierite gneiss in the other Cordilleran domes, the Tunk Creek unit occurs as a discontinuous km‐scale layer rather than as smaller (m‐scale) pods, is more calcic, and lacks garnet. In addition, kyanite did not transform to sillimanite, and spinel commonly occurs as a blocky matrix phase in addition to vermicules in symplectite. These differences, along with the compositional layering, allow an analysis of bulk composition v. tectonic (PT path) controls on mineral assemblages and textures. Pseudosection modelling of different layers in the Tunk Creek unit provides a basis for understanding the metamorphic history of these texturally complex, refractory rocks and their host gneiss domes, and other such rocks in similar tectonic settings.  相似文献   
5.
Spinel–cordierite symplectites partially replacing andalusite occur in metapelitic rocks within the cores of several country rock diapirs that have ascended into the upper levels of layered mafic/ultramafic rocks in the Bushveld Complex. We investigate the petrogenesis of these symplectites in one of these diapirs, the Phepane dome. Petrographic evidence indicates that at conditions immediately below the solidus the rocks were characterized by a cordierite‐, biotite‐ and K‐feldspar‐rich matrix and 5–10 mm long andalusite porphyroblasts surrounded by biotite‐rich fringes. Phase relations in the MnNCKFMASHT model system constrain the near‐solidus prograde path to around 3 kbar and imply that andalusite persisted metastably into the sillimanite + melt field, where the fringing relationship between biotite and andalusite provided spatially restricted equilibrium domains with silica‐deficient effective bulk compositions that focused suprasolidus reaction. MnNCKFMASHT pseudosections that model these compositional domains suggest that volatile phase‐absent melting reactions consuming andalusite and biotite initially produced a moat of cordierite surrounding andalusite; reaction progressed until all quartz was consumed. Spinel is predicted to grow with cordierite at around 720 °C. Formation of the aluminous solid products was strongly controlled by the receding edge of andalusite grains, with symplectites forming at the andalusite‐cordierite moat interface. Decompression due to melt‐assisted diapiric rise of the floor rocks into the overlying mafic/ultramafic rocks occurred close to the thermal peak. Re‐crossing of the solidus at P = 1.5–2 kbar, T > 700 °C resulted in preservation of the symplectites. Two features of the silica‐deficient domains inhibited resorption of spinel. First, the cordierite moat armoured the symplectites from reaction with crystallizing melt in the outer part of the pseudomorphs. Second, an up‐T step in the solidus at low‐P, which may be in excess of 100 °C higher than the quartz‐saturated solidus, resulted in high‐T crystallization of melt on decompression. Even in metapelitic rocks where melt is retained, preservation of spinel is favoured by decompression.  相似文献   
6.
Abstract Garnet granulites from Sri Lanka preserve textural and chemical evidence for prograde equilibration at temperatures of at least 700–750°C and pressures in the vicinity of 6–8 kbar. Associated strain patterns suggest prograde metamorphism occurred during and immediately following an episode of crustal thickening, with the prograde P–T conditions probably reflecting a combination of the conductive and advective transport of heat at the mid-levels of tectonically thickened crust. The occurrence of prograde wollastonite provides evidence for internally buffered fluid compositions, or fluid absent conditions, during peak metamorphism and precludes pervasive advection of a CO2-rich fluid. The advective heat component is therefore likely to have been provided by the transport of silicate melt. Intricate symplectitic textures record partial re-equilibration of the garnet granulites to lower pressures (˜ 4–6 kbar) at high temperatures (600–750°C), and testify either to the erosional denudation of the overthick crust prior to significant cooling (i.e. quasi-isothermal decompression) or to a subsequent static heating possibly of early Palaeozoic age (Pan-African). The metamorphic history of the Sri Lankan granulites is compared with high grade terrains in the neighbouring fragments of Gondwana, with the emphasis on similarities with Proterozoic granulites of the East Antarctic craton.  相似文献   
7.
Calculated mineral equilibria are used to account for the formation of sapphirine–plagioclase, spinel–plagioclase and corundum–plagioclase symplectites replacing kyanite in quartz–plagioclase–garnet–kyanite granulite facies gneisses from the Southern Domain of the Athabasca granulite terrane, a segment of the Snowbird tectonic zone in northern Saskatchewan, Canada. Metamorphic conditions of >14 kbar and 800 °C are established for the high pressure, garnet–kyanite assemblage using constraints from P–T pseudosections and Zr‐in‐rutile thermometry. Replacement of kyanite by symplectites reflects the reaction of kyanite with the matrix following near‐isothermal decompression to <10 kbar. The chemical potential gradients developed between the kyanite and the matrix led to diffusion that attempted to flatten the gradients, kyanite persisting as a stable phase while it is consumed by symplectite from its edge. In this local equilibrium model, the mineral and mineral compositional spatial relationships are shown to correspond to paths in μ(Na2O)–μ(CaO)–μ(K2O)–μ(FeO)–μ(MgO) in the model chemical system, Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2 (NCKFMAS), with SiO2 and Al2O3 taken to be completely immobile. The values of μ(Na2O) and μ(CaO) are constrained by fixing P–T conditions and choosing appropriate μ(Na2O) and μ(CaO) values that correspond to the observed plagioclase compositions. μ(FeO)–μ(MgO) diagrams show the corresponding spatial relationships with kyanite and the symplectite phases. These results demonstrate that the replacement of kyanite by sapphirine–plagioclase and spinel–plagioclase appears to be metastable with respect to replacement by corundum–plagioclase. Replacement by corundum–plagioclase does also occur, apparently overprinting pre‐existing symplectite and also kyanite. Ignoring corundum, the resulting diagrams account for the spatial relationships and compositions observed in the spinel–plagioclase and sapphirine–plagioclase symplectites. They are predicted to occur over both a wide range of P–T conditions (6–11 kbar, 650–850 °C) and plagioclase compositions (XAn = 0.5–0.9). The wide range of P–T conditions that may result in identical spatial and compositional relationships suggests that such reaction textures may be of limited use in accurately quantifying the P–T conditions of retrograde metamorphism.  相似文献   
8.
High-Mg–Al, silica-undersaturated metapelites from theOygarden Group of islands, East Antarctica, preserve clear evidencefor the stable coexistence of the assemblage orthopyroxene +corundum in natural rocks. The quartz-absent metapelite occursas pods and isolated layers within a high-strain zone relatedto deformation during the c. 0·93 Ga Rayner StructuralEpisode. Assemblages that include orthopyroxene, corundum, sapphirine,sillimanite, cordierite, garnet and kornerupine are developedacross a pre-existing compositional zoning, leading to contrastingmineral Fe–Mg ratios. The assemblage orthopyroxene–corundumis shown to exist in only a very restricted range of bulk compositionsand PT histories. Simplified qualitative FMAS grids havebeen constructed for kornerupine-absent and -present systems,illustrating MAS terminations and divariant equilibria thathelp to describe the mineral assemblage and reaction history.Reaction textures that include coronas of sapphirine and sillimaniteseparating orthopyroxene and corundum, and symplectites of orthopyroxene+ sapphirine ± cordierite/plagioclase, orthopyroxene+ sillimanite ± cordierite/plagioclase and orthopyroxene+ sapphirine + sillimanite embaying garnet, imply a clockwisePTt evolution. Conditions of P > 9–10kbar and T  相似文献   
9.
大别山地区超高压变质岩的不平衡退变质反应及动力学   总被引:7,自引:3,他引:7  
张泽明 《地球科学》1996,21(5):501-507
大别山区超高压变质岩的退变质作用表现为后成合晶和后成合晶冠状体的形成。这是薄片尺度不平衡反应的产物,岩石学和矿物微区化学研究表明,后成合晶结构是等化学出溶反应的结果,而后成合晶冠状体结构是通过扩散反应形成的,这两种反应结构都是由页片状和杆状矿物组成,矿物页的形态与超高压变质岩的pTt轨迹相关。  相似文献   
10.
In mafic granulites, garnet can form by reactions such as Opx + Pl = Cpx + Grt + Qtz; Opx + Pl = Grt + Qtz. As a result of isothermal decompression (ITD), garnet can then break down to a characteristic orthopyroxene-plagioclase symplectite. Mafic, iron-rich garnet-pyroxene granulite from the Guaxupé Massif has symplectite that formed by near-isothermal decompression, as a consequence of uplift of the granulite facies terrane. This symplectite was found to consist of vermicular clinopyroxene-orthopyroxene-plagioclase, with clinopyroxene clearly growing from the garnet that is breaking down, modal amounts of clinopyroxene being less than orthopyroxene. Electron probe analyses show clear differences between core (Cpx1), rim, and symplectite clinopyroxene (Cpx2). Considering also the presence of magnetite in the symplectite texture, garnet breakdown is thought to be better represented by a reaction such as Cpx1 + Grt + O2 = Cpx2 + Opx + Pl +Mt + Qtz.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号