首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1581篇
  免费   268篇
  国内免费   583篇
测绘学   16篇
大气科学   11篇
地球物理   416篇
地质学   1594篇
海洋学   117篇
天文学   28篇
综合类   37篇
自然地理   213篇
  2024年   7篇
  2023年   27篇
  2022年   63篇
  2021年   86篇
  2020年   82篇
  2019年   85篇
  2018年   84篇
  2017年   80篇
  2016年   70篇
  2015年   67篇
  2014年   67篇
  2013年   102篇
  2012年   108篇
  2011年   75篇
  2010年   68篇
  2009年   98篇
  2008年   90篇
  2007年   121篇
  2006年   109篇
  2005年   77篇
  2004年   106篇
  2003年   88篇
  2002年   76篇
  2001年   68篇
  2000年   66篇
  1999年   59篇
  1998年   61篇
  1997年   64篇
  1996年   55篇
  1995年   42篇
  1994年   43篇
  1993年   35篇
  1992年   27篇
  1991年   16篇
  1990年   15篇
  1989年   13篇
  1988年   19篇
  1987年   4篇
  1986年   6篇
  1983年   2篇
  1978年   1篇
排序方式: 共有2432条查询结果,搜索用时 15 毫秒
1.
Two distinct age estimates for eclogite-facies metamorphism in the Sanbagawa belt have been proposed: (i) c.  120–110 Ma based on a zircon SHRIMP age for the Western Iratsu unit and (ii) c.  88–89 Ma based on a garnet–omphacite Lu–Hf isochron age from the Seba and Kotsu eclogite units. Despite the contrasting estimates of formation ages, petrological studies suggest the formation conditions of the Western Iratsu unit are indistinguishable from those of the other two units—all ∼20 kbar and 600–650 °C. Studies of the associated geological structures suggest the Seba and Western Iratsu units are parts of a larger semi-continuous eclogite unit. A combination of geochronological and petrological studies for the Western Iratsu eclogite offers a resolution to this discrepancy in age estimates. New Lu–Hf dating for the Western Iratsu eclogite yields an age of 115.9 ± 0.5 Ma that is compatible with the zircon SHRIMP age. However, petrological studies show that there was significant garnet growth in the Western Iratsu eclogite before eclogite facies metamorphism, and the early core growth is associated with a strong concentration of Lu. Pre-eclogite facies garnet (Grt1) includes epidote–amphibolite facies parageneses equilibrated at 550–650 °C and ∼10 kbar, and this is overgrown by prograde eclogite facies garnet (Grt2). The Lu–Hf age of c.  116 Ma is strongly skewed to the isotopic composition of Grt1 and is interpreted to reflect the age of the pre-eclogite phase. The considerable time gap ( c.  27 Myr) between the two Lu–Hf ages suggests they may be related to separate tectonic events or distinct phases in the evolution of the Sanbagawa subduction zone.  相似文献   
2.
北天山东段康古尔塔格带是晚古生代塔里木板块和准噶尔板块碰撞的结果。它是一条复杂的、强烈的高应变带.并具有独特的变形机制、应变序列以及构造变形。本文运用构造-地层研究方法对该碰撞带的构造特征加以分析和研究。  相似文献   
3.
Abstract Eclogites are distributed for more than 500 km along a major tectonic boundary between the Sino-Korean and Yangtze cratons in central and eastern China. These eclogites usually have high-P assemblages including omphacite + kyanite and/or coesite (or its pseudomorph), and form a high-P eclogite terrane. They occur as isolated lenses or blocks 10 cm to 300 m long in gneisses (Type I), serpentinized garnet peridotites (Type II) and marbles (Type III). Type I eclogites were formed by prograde metamorphism, and their primary metamorphic mineral assemblage consists mainly of garnet [pyrope (Prp) = 15–40 mol%], omphacite [jadeite (Jd) = 34–64 mol%], pargasitic amphibole, kyanite, phengitic muscovite, zoisite, an SiO2 phase, apatite, rutile and zircon. Type II eclogites characteristically contain no SiO2 phase, and are divided into prograde eclogites and mantle-derived eclogites. The prograde eclogites of Type II are petrographically similar to Type I eclogites. The mantle-derived eclogites have high MgO/(FeO + Fe2O3) and Cr2O3 compositions in bulk rock and minerals, and consist mainly of pyrope-rich garnet (Prp = 48–60 mol%), sodic augite (Jd = 10–27 mol%) and rutile. Type III eclogites have an unusual mineral assemblage of grossular-rich (Grs = 57 mol%) garnet + omphacite (Jd = 30–34 mol%) + pargasite + rutile. Pargasitic and taramitic amphiboles, calcic plagioclase (An68), epidote, zoisite, K-feldspar and paragonite occur as inclusions in garnet and omphacite in the prograde eclogites. This suggests that the prograde eclogites were formed by recrystallization of epidote amphibolite and/or amphibolite facies rocks with near-isothermal compression reflecting crustal thickening during continent–continent collision of late Proterozoic age. Equilibrium conditions of the prograde eclogites range from P > 26 kbar and T= 500–750°C in the western part to P > 28 kbar and T= 810–880°C in the eastern part of the high-P eclogite terrane. The prograde eclogites in the eastern part are considered to have been derived from a deeper position than those in the western part. Subsequent reactions, manifested by (1) narrow rims of sodic plagioclase or paragonite on kyanite and (2) symplectites between omphacite and quartz are interpreted as an effect of near-isothermal decompression during the retrograde stage. The conditions at which symplectites re-equilibrated tend to increase from west (P < 10 kbar and T < 580°C) to east (P > 9 kbar and T > 680°C). Equilibrium temperatures of Type II mantle-derived eclogites and Type III eclogite are 730–750°C and 680°C, respectively.  相似文献   
4.
A high‐speed digital camera was employed to record the sand grain/bed collision process. With image processing and a statistical method, a series of parameters of the collision process were obtained. The results show that the collision process of a grain with rebounding can be represented by two parameters: the kinetic energy restitution coefficient and the collision angle. Both parameters satisfy a normal distribution, and they are dependent on one another. With an increase of the collision angle, the distribution of the kinetic energy restitution gradually reduces from a broad to a narrow range with low values. The percentage of vertical velocity restitution coefficients greater than 1 can reach 70% or more, which ensures that the settling time of the sand grains in the air increases and that they receive more energy from the air to progress the saltation movement.  相似文献   
5.
The regionally extensive, coarse-grained Bakhtiyari Formation represents the youngest synorogenic fill in the Zagros foreland basin of Iran. The Bakhtiyari is present throughout the Zagros fold-thrust belt and consists of conglomerate with subordinate sandstone and marl. The formation is up to 3000 m thick and was deposited in foredeep and wedge-top depocenters flanked by fold-thrust structures. Although the Bakhtiyari concordantly overlies Miocene deposits in foreland regions, an angular unconformity above tilted Paleozoic to Miocene rocks is expressed in the hinterland (High Zagros).

The Bakhtiyari Formation has been widely considered to be a regional sheet of Pliocene–Pleistocene conglomerate deposited during and after major late Miocene–Pliocene shortening. It is further believed that rapid fold growth and Bakhtiyari deposition commenced simultaneously across the fold-thrust belt, with limited migration from hinterland (NE) to foreland (SW). Thus, the Bakhtiyari is generally interpreted as an unmistakable time indicator for shortening and surface uplift across the Zagros. However, new structural and stratigraphic data show that the most-proximal Bakhtiyari exposures, in the High Zagros south of Shahr-kord, were deposited during the early Miocene and probably Oligocene. In this locality, a coarse-grained Bakhtiyari succession several hundred meters thick contains gray marl, limestone, and sandstone with diagnostic marine pelecypod, gastropod, coral, and coralline algae fossils. Foraminiferal and palynological species indicate deposition during early Miocene time. However, the lower Miocene marine interval lies in angular unconformity above ~ 150 m of Bakhtiyari conglomerate that, in turn, unconformably caps an Oligocene marine sequence. These relationships attest to syndepositional deformation and suggest that the oldest Bakhtiyari conglomerate could be Oligocene in age.

The new age information constrains the timing of initial foreland-basin development and proximal Bakhtiyari deposition in the Zagros hinterland. These findings reveal that structural evolution of the High Zagros was underway by early Miocene and probably Oligocene time, earlier than commonly envisioned. The age of the Bakhtiyari Formation in the High Zagros contrasts significantly with the Pliocene–Quaternary Bakhtiyari deposits near the modern deformation front, suggesting a long-term (> 20 Myr) advance of deformation toward the foreland.  相似文献   

6.
Partial melting of subducted oceanic crust has been identifiedin the Sierra del Convento mélange (Cuba). This serpentinite-matrixmélange contains blocks of mid-ocean ridge basalt (MORB)-derivedplagioclase-lacking epidote ± garnet amphibolite intimatelyassociated with peraluminous trondhjemitic–tonalitic rocks.Field relations, major element bulk-rock compositions, mineralassemblages, peak metamorphic conditions (c. 750°C, 14–16kbar), experimental evidence, and theoretical phase relationssupport formation of the trondhjemitic–tonalitic rocksby wet melting of subducted amphibolites. Phase relations andmass-balance calculations indicate eutectic- and peritectic-likemelting reactions characterized by large stoichiometric coefficientsof reactant plagioclase and suggest that this phase was completelyconsumed upon melting. The magmatic assemblages of the trondhjemitic–tonaliticmelts, consisting of plagioclase, quartz, epidote, ±paragonite, ± pargasite, and ± kyanite, crystallizedat depth (14–15 kbar). The peraluminous composition ofthe melts is consistent with experimental evidence, explainsthe presence of magmatic paragonite and (relict) kyanite, andplaces important constraints on the interpretation of slab-derivedmagmatic rocks. Calculated P–T conditions indicate counterclockwiseP–T paths during exhumation, when retrograde blueschist-faciesoverprints, composed of combinations of omphacite, glaucophane,actinolite, tremolite, paragonite, lawsonite, albite, (clino)zoisite,chlorite, pumpellyite and phengite, were formed in the amphibolitesand trondhjemites. Partial melting of subducted oceanic crustin eastern Cuba is unique in the Caribbean realm and has importantconsequences for the plate-tectonic interpretation of the region,as it supports a scenario of onset of subduction of a youngoceanic lithosphere during the early Cretaceous (c. 120 Ma).The counterclockwise P–T paths were caused by ensuingexhumation during continued subduction. KEY WORDS: amphibolite; Cuba; exhumation; partial melting; trondhjemite; subduction  相似文献   
7.
Experimental phase equilibrium and trace element partitioningdata are reported for H2O-saturated mid-ocean ridge basalt at2·5 GPa, 750–900°C and oxygen fugacities atthe nickel–nickel oxide buffer. Garnet, omphacite andrutile are present at all temperatures. Amphibole and epidotedisappear as residual phases above 800°C; allanite appearsabove 750°C. The Na–Al-rich silicate glass presentin all run products is likely to have quenched from a supercriticalliquid. Trace element analyses of glasses demonstrate the importantcontrol exerted by residual minerals on liquid chemistry. Inaddition to garnet, which controls heavy rare earth elements(HREE) and Sc, and rutile, which controls Ti, Nb and Ta, allanitebuffers the light REE (LREE; La–Sm) contents of liquidsto relatively low levels and preferentially holds back Th relativeto U. In agreement with previous experimental and metamorphicstudies we propose that residual allanite plays a key role inselectively retaining trace elements in the slab during subduction.Experimental data and analyses of allanite-bearing volcanicrocks are used to derive a model for allanite solubility inliquids as a function of pressure, temperature, anhydrous liquidcomposition and LREE content. The large temperature dependenceof allanite solubility is very similar to that previously determinedfor monazite. Our model, fitted to 48 datapoints, retrievesLREE solubility (in ppm) to within a factor of 1· 40over a pressure range of 0–4 GPa, temperature range of700–1200°C and for liquids with anhydrous SiO2 contentsof 50–84 wt %. This uncertainty in LREE content is equivalentto a temperature uncertainty of only ± 27°C at 1000K, indicating the potential of allanite as a geothermometer.Silicic liquids from either basaltic or sedimentary protolithswill be saturated in allanite except for Ca-poor protolithsor at very high temperatures. For conventional subduction geothermsthe low solubility of LREE (+ Th) in liquids raises questionsabout the mechanism of LREE + Th transport from slab to wedge.It is suggested either that, locally, temperatures experiencedby the slab are high enough to eliminate allanite in the residueor that substantial volumes of H2O-rich fluids must pass throughthe mantle wedge prior to melting. The solubility of accessoryphases in fluids derived from subducted rocks can provide importantconstraints on subduction zone thermal structure. KEY WORDS: subduction; experimental petrology; allanite; solubility; supercritical liquid; eclogite  相似文献   
8.
试论东海陆架盆地的基底构造演化和盆地形成机制   总被引:4,自引:0,他引:4  
本文主要根据东海陆架盆地和周边的地质、地球物理资料,分析盆地的基底岩性特征、结构特征。认为东海陆架盆地的基底除元古界片麻岩外,还分布有一定范围的中生界及古生界。基底构造特征是纵向上多层次,横向上不均一,南北有别,东西分带。构造演化上经历了张、合、压、扭等复杂过程。  相似文献   
9.
In this paper a numerical analysis method combining FEM incemental technique with limit analysis concept is proposed for the study of the static strength of offshore platform in collision. Large deformation and plasticity are accounted for and the limit yield surface expressed by generalized stress for a tubular section is derived. The modified stiffness matrix of space beam element is formulated by Plastic Node Method. The buckling behavior of beam columns can also be taken into account. It can trace the generation of plastic hinges during loading and finally the ultimate strength of offshore platform against collision is obtained.  相似文献   
10.
以微量元素、稀土元素、Sr和Nd同位素变异特征为依据,确定鲁苏榴辉岩为多成因、多来源和多阶段,指出主要是在印支期扬子陆块与华北陆块碰撞造山作用过程中,挤入的上地幔碎片以及不同原岩类型的壳内高压变质岩碎块。燕山晚期的区域构造热事件使得某些榴辉岩的同位素体系再平衡。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号