首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   1篇
测绘学   1篇
地质学   3篇
海洋学   1篇
  2018年   1篇
  2013年   2篇
  2008年   1篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The free settling velocity of cylinders and disks falling in quiescent Newtonian and power law liquids has been measured over wide ranges of experimental conditions of the particle Reynolds number (10− 5–∼300), power law flow behaviour index (0.31–1) and the length-to-diameter ratio, ∼0.4–∼14. The corresponding range of sphericity is 0.62 to 0.86. An existing drag expression which has been tested extensively for spherical particles falling in Newtonian and in power law fluids has been slightly modified here for non-spherical particles. In particular, the use of this drag expression necessitates a knowledge of an equal volume sphere diameter (to evaluate the Reynolds number and drag coefficient) and the ratio of the surface area to the projected area of a non-spherical particle. With these modifications, the approach outlined here reproduces the present and the literature data for a wide range of non-spherical particles including cones, prisms, needles, cylinders settling in both Newtonian and power law fluids with reasonable levels of accuracy.  相似文献   
2.
Shape is a fundamental property of all objects, including sedimentary particles, but it remains one of the most difficult to characterize and quantify for all but the simplest of shapes. Despite a large literature on the subject, there remains widespread confusion regarding the meaning and relative value of different measures of particle shape. This paper re‐examines the basic concepts of particle shape and suggests a number of new and modified methods which are widely applicable to a range of sedimentological problems; it is shown that the most important aspects of particle form are represented by the I/L ratio (elongation ratio) and S/I ratio (flatness ratio). A combination of these two ratios can be used to classify particles in terms of 25 form classes. A method of obtaining a quantitative measure of particle roundness using simple image analysis software is described, and a new visual roundness comparator is presented. It is recommended that measurements of both roundness and circularity (a proxy measure of sphericity) are made on grain images in three orthogonal orientations and average values calculated for each particle. A further shape property, irregularity, is defined and a classification scheme proposed for use in describing and comparing irregular or branching sedimentary particles such as chert and coral.  相似文献   
3.
In the early 1780s, Nagakubo Sekisui, the first Japanese scientific geographer, published a world map containing latitudes and longitudes, based on Matteo Ricci's map of 1602. The map and its extensive explanatory text had a considerable impact on the educated classes of the late Edo Period (1603–1868) toward their new vision of the world. We are providing here an analysis of the map and the first complete English translation of Nagakubo Sekisui's most interesting, long explanatory text.  相似文献   
4.
颗粒级配与形状对钙质砂渗透性的影响   总被引:1,自引:0,他引:1  
任玉宾  王胤  杨庆 《岩土力学》2018,39(2):491-497
钙质砂是富存于热带海洋环境(包括中国南海海域)中的一种特殊岩土介质,具有不同于陆源砂的水理性质。采用传统常水头渗流试验,首先探究了不同不均匀系数和曲率系数条件下级配对钙质砂渗透性的影响。针对钙质砂的颗粒形状特性,采用扫描电镜(SEM)与图像处理技术,引入球度 和圆度X的比值 从三维空间角度上对颗粒形状进行了定量描述。并在粒径区间、相对密实度相同的条件下,通过与福建标准砂、玻璃珠进行对比试验来考察钙质砂渗透特性,从而进一步探究颗粒形状对钙质砂渗透性的影响。试验结果表明,钙质砂渗透性随着颗粒粒径不均匀系数和曲率系数的增大而增大,符合级配对一般砂土渗透性的影响规律;钙质砂颗粒形状具有较强的结构性和不均匀性,同等密实度下钙质砂的渗透性小于陆源的石英砂。本研究获得的钙质砂渗透规律对今后南海岛礁填筑和海上平台基础工程设计具有一定的指导意义。  相似文献   
5.
Abstract

This study aims to evaluate the relationship between saturated hydraulic conductivity with particle shape and packing density characteristics of silty sand soils. The article presents a series of hydraulics tests performed on three kinds of sand with different particles shapes (Chlef rounded sand, Fontainebleau sub-rounded sand and Hostun sub-angular sand) mixed with low plastic rounded Chlef silt in the range of 0–30% fines content. The sand–silt mixture samples were tested in the constant-head permeability device at a loose relative density (Dr = 18%) and a constant room temperature (T?=?20?°C). The obtained results indicate that the measured saturated hydraulic conductivity (Ks) correlates very well with the fines content (Fc), packing density in terms of [maximum void ratio “emax,” minimum void ratio “emin,” predicted maximum void ratio “emaxpr and predicted minimum void ratio “eminpr] and particle shape characteristics ratios in terms of roundness ratio (Rr = Rhs/Rmixture) and sphericity ratio (Sr = Shs/Smixture) of the silty sand materials under consideration. Moreover, the analysis of the available data show a noticeable success in exploring the prediction of the saturated hydraulic conductivity (Ks) based on the particle shape and packing density characteristics (Rr, Sr, emax, and emin) of the studied sand–silt mixture samples.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号