首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   541篇
  免费   78篇
  国内免费   168篇
测绘学   2篇
大气科学   5篇
地球物理   100篇
地质学   551篇
海洋学   50篇
天文学   11篇
综合类   21篇
自然地理   47篇
  2024年   2篇
  2023年   7篇
  2022年   9篇
  2021年   20篇
  2020年   20篇
  2019年   26篇
  2018年   14篇
  2017年   25篇
  2016年   20篇
  2015年   22篇
  2014年   32篇
  2013年   33篇
  2012年   42篇
  2011年   27篇
  2010年   20篇
  2009年   25篇
  2008年   32篇
  2007年   50篇
  2006年   32篇
  2005年   46篇
  2004年   52篇
  2003年   24篇
  2002年   27篇
  2001年   28篇
  2000年   21篇
  1999年   24篇
  1998年   20篇
  1997年   13篇
  1996年   11篇
  1995年   6篇
  1994年   18篇
  1993年   5篇
  1992年   3篇
  1991年   6篇
  1990年   7篇
  1989年   4篇
  1988年   6篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有787条查询结果,搜索用时 31 毫秒
1.
The authors analyzed the data collected in the Ecological Station Jiaozhou Bay from May 1991 to November 1994, including 12 seasonal investigations, to determine the characteristics, dynamic cycles and variation trends of the silicate in the bay. The results indicated that the rivers around Jiaozhou Bay provided abundant supply of silicate to the bay. The silicate concentration there depended on river flow variation. The horizontal variation of silicate concentration on the transect showed that the silicate concentration decreased with distance from shorelines. The vertical variation of it showed that silicate sank and deposited on the sea bottom by phytoplankton uptake and death, and zooplankton excretion. In this way, silicon would endlessly be transferred from terrestrial sources to the sea bottom. The silicon took up by phytoplankton and by other biogeochemical processes led to insufficient silicon supply for phytoplankton growth. In this paper, a 2D dynamic model of river flow versus silicate concentration was established by which silicate concentrations of 0.028–0.062 μmol/L in seawater was yielded by inputting certain seasonal unit river flows (m3/s), or in other words, the silicate supply rate; and when the unit river flow was set to zero, meaning no river input, the silicate concentrations were between 0.05–0.69 μmol/L in the bay. In terms of the silicate supply rate, Jiaozhou Bay was divided into three parts. The division shows a given river flow could generate several different silicon levels in corresponding regions, so as to the silicon-limitation levels to the phytoplankton in these regions. Another dynamic model of river flow versus primary production was set up by which the phytoplankton primary production of 5.21–15.55 (mgC/m2·d)/(m3/s) were obtained in our case at unit river flow values via silicate concentration or primary production conversion rate. Similarly, the values of primary production of 121.98–195.33 (mgC/m2·d) were achieved at zero unit river flow condition. A primary production conversion rate reflects the sensitivity to silicon depletion so as to different phytoplankton primary production and silicon requirements by different phytoplankton assemblages in different marine areas. In addition, the authors differentiated two equations (Eqs. 1 and 2) in the models to obtain the river flow variation that determines the silicate concentration variation, and in turn, the variation of primary production. These results proved further that nutrient silicon is a limiting factor for phytoplankton growth. This study was funded by NSFC (No. 40036010), and the Director's Fund of the Beihai Sea Monitoring Center, the State Oceanic Administration.  相似文献   
2.
Biogenic silicate accumulation in sediments, Jiaozhou Bay   总被引:1,自引:0,他引:1  
1 INTRODUCTION Silicate, or silicic acid (H4SiO4), is a very im- portant nutrient in the ocean. Unlike other major nu- trients such as phosphate and nitrate or ammonium, which are needed by almost all marine plankton, silicate is an essential chemical req…  相似文献   
3.
苏北盘石山、练山地幔捕虏体的PGE地球化学   总被引:3,自引:0,他引:3  
通过锍镍火试金预富集法,分析了位于郯庐断裂带东侧的盘石山、练山地幔橄榄岩包体中铂族元素(PGE)和Au含量.不同于部分熔融残留成因地幔橄榄岩中通常所观察到的负斜率型或平坦型的分布模式,这两地的地幔橄榄岩以Pt、Pd、Ru相对富集,Ir、Rh相对亏损的"燕子型"分布模式为特征.Pt、Pd等不相容元素富集说明上地幔除经历过早期的部分熔融外,还经历了后期富Pt、Pd的高熔/岩比的熔(流)体的层析分离交代作用影响.盘石山地幔橄榄岩的PGE总量比练山高,Os的含量也比原始地幔值高;而练山地幔橄榄岩的Os含量比原始地幔值低,说明交代作用带走了练山地幔橄榄岩中的Os,却没有很大改变盘石山地幔橄榄岩中的Os含量,这可能与交代熔(流)体含硫量饱和程度有关.Rh的负异常可能与部分熔融过程中熔体较低的fo2有关.  相似文献   
4.
I~IOXThe Okinawa Trough is an extending back--arc basin between the East China Sea Shelf andthe Ry'Ukyu Island Arc of Japan. There are widespreadly distributing acid pumice in the troughand a little basalt just in some area of the extending center. There have been some detailed rePOrtsabout the mineralogy and petrochemical feature of the subalkali tholeiite and alkali trachyte in thetrough (Zhai and Gan, 1995; Li et al., 1997; Qin and Zhai, 1988). This paper mainly reportselectron mic…  相似文献   
5.
Four large-scale bathymetric maps of the Southern East Pacific Rise and its flanks between 15° S and 19° S display many of the unique features of this superfast spreading environment including abundant seamounts (the Rano Rahi Field), axial discontinuities, discontinuity migration, and abyssal hill variation. Along with a summary of the regional geology, these maps will provide a valuable reference for other sea-going programs on-and off-axis in this area, including the Mantle ELectromagnetic and Tomography (MELT) experiment.  相似文献   
6.
Surface temperature, salinity, concentrations of silicate (Si) and nitrate + nitrite (N), and in vivo fluorescence (Fluor) were investigated in the marginal ice zone (MIZ) and the seasonally open oceanic zone (SOOZ) (32–40°E, 64–69°S) from February 23 to 28 1992. In the MIZ the mean Si and N were 67.8 ± 2.2 M and 32.5 ± 1.7 M, respectively. There was a trend that low N values coincided with high Fluor values. Observation conducted at one point (64°S, 38°E) revealed a diel variation pattern in Fluor. Applying this pattern of deviation from noon value, all Fluor data were normalized to value at local noon. In the MIZ a significant negative correlation was observed between the normalized Fluor and N but not Si. On the other hand, Si decreased continuously from south to north in the SOOZ and was negatively correlated with the normalized Fluor. Difference in Si concentration was about 30 M between the sea around 64°S and the MIZ, while the difference in N concentration was estimated as less than 10 M. If diatoms take up silicate and nitrogen at an approximate ratio of 1:1, additional nitrogenous nutrients other than nitrate and nitrite (e.g. ammonia, urea etc.) would be required. In this case, an f-ratio of lower than 33% is obtained. It is suggested that in the MIZ abundance of phytoplankton community dominated by non-diatom increases utilizing nitrate while in the SOOZ abundance of phytoplankton community dominated by diatoms increases consuming Si and regenerated nitrogen.  相似文献   
7.
Many modern seafloor tectonic environments are host to hydrothermal systems and associated polymetallic sulfide deposits. Metal transport and precipitation are controlled by magmatic processes such as pre-eruptive degassing and the hydrothermal cycle. The original availability of Pb and other ore metals in a given setting is dependent on concentrations in the original magmatic source or additional enrichment processes. We have examined the Pb budget of melt inclusions from nine modern seafloor settings representing back-arcs, mid-ocean ridges and seamounts. Melt inclusions provide information on the characteristics of parental magmas, including insights into metal budgets. Trace element data in melt inclusions hosted in plagioclase, olivine and pyroxene were obtained by laser-ablation inductively-coupled mass-spectrometry.Results from back-arcs emphasize the impact of slab-subduction and dehydration processes on the chemical characteristics of generated magmas. Volatile- and fluid-mobile element-rich melt inclusions at Manus basin and Okinawa trough reflect a robust contribution of elements from the subducting slab as evidenced by relatively low Ce/Pb ratios. At Bransfield strait, on the other hand, melt inclusions are volatile poor, and fluid-mobile element ratios are similar to mid-ocean ridge values indicating little or no contribution from the slab. High Cu concentrations at Manus basin and Okinawa trough can be explained by fluxing of ferric iron from the subducting slab benefiting the production of sulfate over sulfide.Metal budgets for seamounts located on and nearby the axis of mid-ocean ridge segments appear to be independent of any input of mantle plume material. Results from the southern Explorer ridge (strong lower mantle influence, transitional- and enriched-MORBs), Pito and Axial seamounts (moderate lower mantle influence, transitional-MORBs) and a Foundation near-ridge seamount (little to no mantle influence, normal-MORB) show that, despite similar tectonic environments and varying contributions of mantle plume material, Cu, Zn and Pb values do not vary significantly between the enriched and non-enriched magma components of a given setting.  相似文献   
8.
Based on the theory of thermal conductivity, in this paper we derived a formula to estimate the prolongation period (AtL) of cooling-crystallization process of a granitic melt caused by latent heat of crystallization as follows:△tL=QL×△tcol/(TM-TC)×CP where TM is initial temperature of the granite melt, Tc crystallization temperature of the granite melt, Cp specific heat, △tcol cooling period of a granite melt from its initial temperature (TM) to its crystallization temperature (Tc), QL latent heat of the granite melt.
The cooling period of the melt for the Fanshan granodiorite from its initial temperature (900℃) to crystallization temperature (600℃) could be estimated -210,000 years if latent heat was not considered. Calculation for the Fanshan melt using the above formula yields a AtL value of -190,000 years, which implies that the actual cooling period within the temperature range of 900°-600℃ should be 400,000 years. This demonstrates that the latent heat produced from crystallization of the granitic melt is a key factor influencing the cooling-crystallization process of a granitic melt, prolongating the period of crystallization and resulting in the large emplacement-crystallization time difference (ECTD) in granite batholith.  相似文献   
9.
Over time periods of 106 years and longer, atmospheric carbon dioxide content is largely controlled by a balance between silicate rock weathering and CO2 sources (degassing from the Earth plus net organic carbon oxidation). Vegetation cover can affect silicate rock weathering rates by increasing soil CO2 content, stabilizing soil cover, and producing organic acids. Forests absorb more solar radiation than most other ecosystems; this tends to warm Earth's climate, especially outside of the tropics; this warmth would tend to increase silicate rock weathering rates. Here, we develop preliminary parameterizations of this effect that could be incorporated into carbonate–silicate cycle models, based on the results of general circulation model simulations.  相似文献   
10.
Fractional crystallization of peraluminous F- and H2O-rich granite magmas progressively enriches the remaining melt with volatiles. We show that, at saturation, the melt may separate into two immiscible conjugate melt fractions, one of the fractions shows increasing peraluminosity and the other increasing peralkalinity. These melt fractions also fractionate the incompatible elements to significantly different degrees. Coexisting melt fractions have differing chemical and physical properties and, due to their high density and viscosity contrasts, they will tend to separate readily from each other. Once separated, each melt fraction evolves independently in response to changing T/P/X conditions and further immiscibility events may occur, each generating its own conjugate pair of melt fractions. The strongly peralkaline melt fractions in particular are very reactive and commonly react until equilibrium is attained. Consequently, the peralkaline melt fraction is commonly preserved only in the isolated melt and mineral inclusions.

We demonstrate that the differences between melt fractions that can be seen most clearly in differing melt inclusion compositions are also visible in the composition of the resulting ore-forming and accessory minerals, and are visible on scales from a few micrometers to hundreds of meters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号