首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   18篇
  国内免费   46篇
测绘学   27篇
大气科学   3篇
地球物理   54篇
地质学   100篇
海洋学   39篇
天文学   1篇
综合类   12篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2020年   5篇
  2019年   12篇
  2018年   3篇
  2017年   5篇
  2016年   10篇
  2015年   10篇
  2014年   14篇
  2013年   15篇
  2012年   10篇
  2011年   12篇
  2010年   16篇
  2009年   13篇
  2008年   20篇
  2007年   13篇
  2006年   9篇
  2005年   6篇
  2004年   11篇
  2003年   15篇
  2002年   8篇
  2001年   2篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有236条查询结果,搜索用时 15 毫秒
1.
We have developed a method for analytically solving the porous medium flow equation in many different geometries for horizontal (two‐dimensional), homogeneous and isotropic aquifers containing impermeable boundaries and any number of pumping or injection wells located at arbitrary positions within the system. Solutions and results are presented for rectangular and circular aquifers but the method presented here is easily extendible to many geometries. Results are also presented for systems where constant head boundary conditions can be emulated internal to the aquifer boundary. Recommendations for extensions of the present work are briefly discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
In many areas of engineering practice, applied loads are not uniformly distributed but often concentrated towards the centre of a foundation. Thus, loads are more realistically depicted as distributed as linearly varying or as parabola of revolution. Solutions for stresses in a transversely isotropic half‐space caused by concave and convex parabolic loads that act on a rectangle have not been derived. This work proposes analytical solutions for stresses in a transversely isotropic half‐space, induced by three‐dimensional, buried, linearly varying/uniform/parabolic rectangular loads. Load types include an upwardly and a downwardly linearly varying load, a uniform load, a concave and a convex parabolic load, all distributed over a rectangular area. These solutions are obtained by integrating the point load solutions in a Cartesian co‐ordinate system for a transversely isotropic half‐space. The buried depth, the dimensions of the loaded area, the type and degree of material anisotropy and the loading type for transversely isotropic half‐spaces influence the proposed solutions. An illustrative example is presented to elucidate the effect of the dimensions of the loaded area, the type and degree of rock anisotropy, and the type of loading on the vertical stress in the isotropic/transversely isotropic rocks subjected to a linearly varying/uniform/parabolic rectangular load. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
3.
J. S. Wu  K. -W. Chen 《Ocean Engineering》2003,30(14):1791-1806
For convenience of dynamic analysis, some offshore structures such as fixed-type platforms are often modeled as the wedge beams supporting tip lumped masses. It is well-known that, due to the effect of the surrounding water, the natural frequencies of a beam in air (or dry beam) are different from those of the same beam immersed in water (or wet beam). However, if the natural frequencies and the associated mode shapes of a dry beam are calculated by taking account of the “added mass” for the immersed beam, then the last natural frequencies and mode shapes will be equal to the corresponding ones of the wet beam. Based on the last concept, the closed form solutions for natural frequencies and the associated mode shapes of the dry beam were determined first, then the partial differential equation of motion for the wet beam was transformed into a matrix equation by using the expansion theorem and the foregoing closed form solutions of free vibration responses for the dry beam. Solving the last matrix equation will give the required natural frequencies and the associated mode shapes of the wet beam. The formulation of this paper is available for the fully or partially immersed double tapered beams with either circular, square or rectangular cross-sections. The taper ratio for width and that for depth may be equal or unequal. The numerical results of this paper were compared with the existing results or the finite-element-method results and good agreement was achieved.  相似文献   
4.
1 .IntroductionRecentlygreatinteresthasbeenshowninthedevelopmentofverylargefloatingstructuressuchasMegaFloatofJapan (Isobe ,1 999)andMOBofUSA (Remmers ,1 999) .Owingtotheirextremelargesizeandgreatflexibility ,thecouplingbetweenthestructuraldeformationandfluidmotionissignifi cant.Thisisatypicalproblemofhydroelasticity .Efficientandaccurateestimationofthehydroelasticresponseofverylargefloatingstructuresinwavesisveryimportantfordesign .Manymethodshavebeenproposedinliteratureforthepredictiono…  相似文献   
5.
A numerical procedure is described for the analysis of the vertical deformation and the stress distribution of the strip footings on layered soil media. Three layers of soil with different stiffness are considered with the middle soil layer the thinnest and most stiff layer. The soil media is discretized and using the theory of elasticity, the governing differential equations are obtained in terms of vertical and horizontal displacements. These equations along with appropriate boundary and continuity conditions are solved by using the finite difference method. The vertical and horizontal displacements, strains and stresses are found at various nodes in the soil media. Parametric studies are carried out to study the effect of the placement depth of the middle soil layer, the relative ratios of the moduli of deformation of the soil layers on the vertical displacement of the footing and the vertical stress distribution. These studies reveal that the middle thin but very stiff layer acts like a plate and redistributes the stresses on the lower soft soil layer uniformly. The displacement on the top and bottom of the middle soil layer is almost the same showing that the compression of the middle layer is negligible as it is very stiff.  相似文献   
6.
The damping‐solvent extraction method for the analysis of unbounded visco‐elastic media is evaluated numerically in the frequency domain in order to investigate the influence of the computational parameters—domain size, amount of artificial damping, and mesh density—on the accuracy of results. An analytical estimate of this influence is presented, and specific questions regarding the influence of the parameters on the results are answered using the analytical estimate and numerical results for two classical problems: the rigid strip and rigid disc footings on a visco‐elastic half‐space with constant hysteretic material damping. As the domain size is increased, the results become more accurate only at lower frequencies, but are essentially unaffected at higher frequencies. Choosing the domain size to ensure that the static stiffness is computed accurately leads to an unnecessarily large domain for analysis at higher frequencies. The results improve by increasing artificial damping but at a slower rate as the total (material plus artificial) damping ratio ζt gets closer to 0.866. However, the results do not deteriorate significantly for the larger amounts of artificial damping, suggesting that ζt≈0.6 is appropriate; a larger value is not likely to influence the accuracy of results. Presented results do not support the earlier suggestion that similar accuracy can be achieved by a large bounded domain with small damping or by a small domain with larger damping. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
7.
Cyclic tests on two large‐scale models of existing bridge piers with rectangular hollow cross‐section were performed in the ELSA laboratory. The prototype structure is an existing reinforced concrete highway bridge constructed in Austria in 1975. The piers presented several seismic deficiencies and consequently they showed poor hysteretic behaviour and limited deformation capacity as well as undesirable failure modes that do not comply with the requirements of modern codes for seismic‐resistant structures. Experimental data are compared to numerical and empirical predictions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
8.
本文基于往复荷载作用下矩形钢管混凝土压弯构件的实验结果,比较了国内外比较典型的设计规范(程),包括英国BS5400(1979)、美国ACI318—99(1999)和AISC-LRFD(1999)、日本AIJ(1997)、欧洲EC4(1994)、中国GJB4142-2000(2001)和福建省地方标准(送审稿),及本文数值方法在计算往复荷载作用下矩形钢管混凝土压弯构件承载力的差异。结果表明,在进行往复荷载作用下矩形钢管混凝土压弯构件承载力计算时,各种计算方法获得的承载力都偏于安全,其中,数值计算结果与实验结果最接近,GJB4142—2000(2001)的计算结果与实验结果吻合程度稍差,ACI318—99(1999),EC4(1994)和福建省地方标准(送审稿)的计算结果比实验结果约低20%,而BS5400(1979)、AISC—LRFD(1999)和AIJ(1997)的计算结果比实验结果总体上低30%以上。本文结果可供进行矩形钢管混凝土结构设计时参考。  相似文献   
9.
基于矩形网格的有限差分走时计算方法   总被引:4,自引:0,他引:4       下载免费PDF全文
对于大多数速度场,地震波沿射线传播的初至波走时,可以用有限差分外推的方法在二维或三维数值网格上计算出来. 在保证精度的条件下,为提高计算效率和适应性,本文推导了基于任意矩形网格和局部平面波前近似的有限差分初至波走时计算方法. 另外,该方法对首波和散射波做了合适的处理,而且不会碰到传统射线法存在的阴影区和焦散区等问题. 简单模型和复杂的Marmousi模型试算的结果表明,该方法精度较高并适用于强纵、横向变速的复杂介质. 基于该方法的Kirchhoff叠前深度偏移, 在主要构造和目的层位置的成像效果上基本达到了波动方程法叠前深度偏移的位置成像效果. 由于未考虑续至波等有效能量,在成像的保幅性上不如波动方程法叠前深度偏移的效果,但其计算效率则明显高于全格林函数法和波动方程法.   相似文献   
10.
An analytical approach using a Winkler model based on two lateral soil displacement components in a three‐dimensional soil is investigated to provide analytical solutions of horizontal response of a rectangular pile subjected to lateral loads in nonhomogeneous soil. The two lateral displacement components of a soil surrounding the rectangular pile are represented by the Fourier series of displacement potential functions in the elastic three‐dimensional analysis. The lateral stiffness coefficient of the rectangular pile shaft in nonhomogeneous soil is derived from the rocking stiffness coefficient taking into account rocking rotation of a rigid pile shaft. The relationship between horizontal displacement, rotation, moment, and shear force for the rectangular pile subjected to horizontal loads in nonhomogeneous soil is obtainable in the form of the recurrence equation. The formulation of lateral displacement and rotation for a rectangular pile subjected to lateral loads on the pile base in nonhomogeneous soil is proposed by taking into account Mindlin's equation and the equivalent thickness for soil layers in the equivalent elastic method. The difference of lateral behavior between square and circular piles subjected to lateral loads is insignificant. The effect of aspect ratio of the rectangular pile on the lateral behavior is great for the lower stiffness ratio between pile and soil and the larger length–equivalent diameter ratio. The effect of the value of Poisson's ratio of soil on lateral stiffness coefficient is relatively small except Poisson's ratio close to 0.5. The comparison of the results calculated by the current method for a rectangular pile subjected to lateral loads in nonhomogeneous soil has shown good agreement with those obtained from the analytical methods and the finite element method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号