首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   14篇
  国内免费   10篇
测绘学   8篇
大气科学   10篇
地球物理   40篇
地质学   18篇
海洋学   11篇
综合类   3篇
自然地理   34篇
  2023年   5篇
  2022年   6篇
  2021年   9篇
  2020年   3篇
  2019年   7篇
  2018年   6篇
  2017年   6篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   16篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   7篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1976年   1篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
1.
Water quality is often highly variable both in space and time, which poses challenges for modelling the more extreme concentrations. This study developed an alternative approach to predicting water quality quantiles at individual locations. We focused on river water quality data that were collected over 25 years, at 102 catchments across the State of Victoria, Australia. We analysed and modelled spatial patterns of the 10th, 25th, 50th, 75th and 90th percentiles of the concentrations of sediments, nutrients and salt, with six common constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). To predict the spatial variation of each quantile for each constituent, we developed statistical regression models and exhaustively searched through 50 catchment characteristics to identify the best set of predictors for that quantile. The models predict the spatial variation in individual quantiles of TSS, TKN and EC well (66%–96% spatial variation explained), while those for TP, FRP and NOx have lower performance (37%–73% spatial variation explained). The most common factors that influence the spatial variations of the different constituents and quantiles are: annual temperature, percentage of cropping land area in catchment and channel slope. The statistical models developed can be used to predict how low- and high-concentration quantiles change with landscape characteristics, and thus provide a useful tool for catchment managers to inform planning and policy making with changing climate and land use conditions.  相似文献   
2.
A bivariate meta-Gaussian density for use in hydrology   总被引:3,自引:0,他引:3  
Convenient bivariate densities found in the literature are often unsuitable for modeling hydrologic variates. They either constrain the range of association between variates, or fix the form of the marginal distributions. The bivariate meta-Gaussian density is constructed by embedding the normal quantile transform of each variate into the Gaussian law. The density can represent a full range of association between variates and admits arbitrarily specified marginal distributions. Modeling and estimation can be decomposed into i) independent analyses of the marginal distributions, and ii) investigation of the dependence structure. Both statistical and judgmental estimation procedures are possible. Some comparisons to recent applications of bivariate densities in the hydrologic literature motivate and illustrate the model.  相似文献   
3.
多变量分位数回归构建印度洋大眼金枪鱼栖息地指数   总被引:1,自引:0,他引:1  
以0~300m水层加权平均水温、50~150m水层的温差和氧差及其交互变量为影响因子,运用分位数回归法,寻找出环境变量与大眼金枪鱼(Thunnus obesus)延绳钓钓获率的最佳上界分位数回归方程,计算出栖息地指数(HSI),并应用地理信息系统(GIS)软件绘制各月HSI空间分布图。研究表明:大眼金枪鱼延绳钓钓获率(HR)依加权平均水温(x)、温差(y)、氧差(z)与的最佳上界分位数回归方程为HR0.70=-15.596+2.124x-0.003x3+0.033xyz-0.036y2z+0.107yz2-0.337z3;HSI空间分布为:16°S—10°N印度洋海域HSI高于0.7,HSI>0.8的海域随季节发生显著变化,马达加斯加外海至100°E、16°S—26°S海域常年存在一片HSI<0.4的区域,26°S—40°S海域的HSI介于0.4~0.5,40°S以南海域HSI<0.4,东非外海季节性地出现一片HSI<0.6的海域。利用多个环境变量的栖息地指数模型来预测分析大洋金枪鱼资源分布效果较好。  相似文献   
4.
The existence of uncertainty in classified remotely sensed data necessitates the application of enhanced techniques for identifying and visualizing the various degrees of uncertainty. This paper, therefore, applies the multidimensional graphical data analysis technique of parallel coordinate plots (PCP) to visualize the uncertainty in Landsat Thematic Mapper (TM) data classified by the Maximum Likelihood Classifier (MLC) and Fuzzy C-Means (FCM). The Landsat TM data are from the Yellow River Delta, Shandong Province, China. Image classification with MLC and FCM provides the probability vector and fuzzy membership vector of each pixel. Based on these vectors, the Shannon's entropy (S.E.) of each pixel is calculated. PCPs are then produced for each classification output. The PCP axes denote the posterior probability vector and fuzzy membership vector and two additional axes represent S.E. and the associated degree of uncertainty. The PCPs highlight the distribution of probability values of different land cover types for each pixel, and also reflect the status of pixels with different degrees of uncertainty. Brushing functionality is then added to PCP visualization in order to highlight selected pixels of interest. This not only reduces the visualization uncertainty, but also provides invaluable information on the positional and spectral characteristics of targeted pixels.  相似文献   
5.
The paper is prompted by apparent deficiencies in the design of plot studies in regional erosion surveys. The principal shortcomings of observational erosion research have been poor sampling design and inadequate analyses of data. The paper identifies various sources of bias which must be taken into account before plot data can be extrapolated to land units in a regional survey. Judging from soil loss data of a case-study in the Ardèche rangelands one may conclude that even accurate plot measurements can still be rather a rough basis for regional erosion assessment. Finally, the paper highlights strategies that might be used to improve erosion sampling.  相似文献   
6.
Current methods of estimation of the univariate spectral density are reviewed and some improvements are made. It is suggested that spectral analysis may perhaps be best thought of as another exploratory data analysis (EDA) tool which complements, rather than competes with, the popular ARMA model building approach. A new diagnostic check for ARMA model adequacy based on the nonparametric spectral density is introduced. Additionally, two new algorithms for fast computation of the autoregressive spectral density function are presented. For improving interpretation of results, a new style of plotting the spectral density function is suggested. Exploratory spectral analyses of a number of hydrological time series are performed and some interesting periodicities are suggested for further investigation. The application of spectral analysis to determine the possible existence of long memory in natural time series is discussed with respect to long riverflow, treering and mud varve series. Moreover, a comparison of the estimated spectral densities suggests the ARMA models fitted previously to these datasets adequately describe the low frequency component. Finally, the software and data used in this paper are available by anonymous ftp from fisher.stats.uwo.ca.  相似文献   
7.
The log-Gumbel distribution is one of the extreme value distributions which has been widely used in flood frequency analysis. This distribution has been examined in this paper regarding quantile estimation and confidence intervals of quantiles. Specific estimation algorithms based on the methods of moments (MOM), probability weighted moments (PWM) and maximum likelihood (ML) are presented. The applicability of the estimation procedures and comparison among the methods have been illustrated based on an application example considering the flood data of the St. Mary's River.  相似文献   
8.
本文针对当前花岗岩研究中存在的一些问题,结合笔者等近年来的工作,概述了进一步研究花岗岩成岩作用和形成环境的新思路。主要包括:(1)利用成分协变图,结合岩石包体成因类型的认识,探讨花岗岩化学演化进程;(2)在全面考察花岗岩的构造样式、岩石组合、岩浆演化和区域地壳不均一性基础上,分析花岗岩形成的构造背景。  相似文献   
9.
Turbidite bed thickness distributions are often interpreted in terms of power laws, even when there are significant departures from a single straight line on a log–log exceedence probability plot. Alternatively, these distributions have been described by a lognormal mixture model. Statistical methods used to analyse and distinguish the two models (power law and lognormal mixture) are presented here. In addition, the shortcomings of some frequently applied techniques are discussed, using a new data set from the Tarcău Sandstone of the East Carpathians, Romania, and published data from the Marnoso‐Arenacea Formation of Italy. Log–log exceedence plots and least squares fitting by themselves are inappropriate tools for the analysis of bed thickness distributions; they must be accompanied by the assessment of other types of diagrams (cumulative probability, histogram of log‐transformed values, q–q plots) and the use of a measure of goodness‐of‐fit other than R2, such as the chi‐square or the Kolmogorov–Smirnov statistics. When interpreting data that do not follow a single straight line on a log–log exceedence plot, it is important to take into account that ‘segmented’ power laws are not simple mixtures of power law populations with arbitrary parameters. Although a simple model of flow confinement does result in segmented plots at the centre of a basin, the segmented shape of the exceedence curve breaks down as the sampling location moves away from the basin centre. The lognormal mixture model is a sedimentologically intuitive alternative to the power law distribution. The expectation–maximization algorithm can be used to estimate the parameters and thus to model lognormal bed thickness mixtures. Taking into account these observations, the bed thickness data from the Tarcău Sandstone are best described by a lognormal mixture model with two components. Compared with the Marnoso‐Arenacea Formation, in which bed thicknesses of thin beds have a larger variability than thicknesses of the thicker beds, the thinner‐bedded population of the Tarcău Sandstone has a lower variability than the thicker‐bedded population. Such differences might reflect contrasting depositional settings, such as the difference between channel levées and basin plains.  相似文献   
10.
克拉美丽气田石炭系火山岩复杂岩性岩电特征   总被引:2,自引:0,他引:2  
准噶尔盆地东部克拉美丽气田石炭系火山岩岩石类型复杂多样,且同一岩性由于结构、构造和成分的差异,电性特征差异亦较大,岩性识别困难。本文通过对该区14口井取心段岩电关系研究,认为自然伽马、电阻率、密度三种曲线岩性特征响应明显; 电阻率、中子、密度、声波四条曲线对火山岩岩石构造特征响应明显。并编制了岩性和岩石构造测井识别交会图版11张。进而利用电测资料识别出该区11种火山岩岩石类型: 正长斑岩、二长斑岩、玄武岩、粗面岩、英安岩、流纹岩、霏细岩、沉凝灰岩、熔结凝灰岩、火山角砾岩和熔结火山角砾岩; 识别出5种岩石构造类型: 正长斑岩中气孔及块状构造和玄武岩中杏仁、碎裂及块状构造。通过本区12口钻井取心后验,测井识别结果与钻井岩心分析结果吻合良好,可作为地区性火山岩测井岩性、岩石构造识别模式。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号