首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   4篇
  国内免费   1篇
地球物理   3篇
地质学   25篇
天文学   1篇
自然地理   1篇
  2020年   2篇
  2019年   2篇
  2017年   2篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
2.
A suite of high-Mg–Al granulites from Sunkarametta, Eastern Ghats Belt, India, shows contrasting prograde assemblages of extremely aluminous orthopyroxene+cordierite+sapphirine and similarly aluminous orthopyroxene+Ti-rich spinel in closely associated domains. Textural and compositional characteristics indicate that both were derived from prograde dehydration–melting of biotite–plagioclase–quartz-bearing protoliths. The former assemblage was stabilized at relatively more magnesian bulk composition. Geothermobarometric data and petrogenetic grid considerations place 'peak' metamorphic conditions at c. 950 °C and 9 kbar. Subsequent to peak metamorphism, the rocks cooled to c . 700–750 °C, with slight lowering of pressure, and the retrograde reactions also involved melt–solid interaction. The inferred P – T  trajectory is one of heating–cooling at lower crustal (25–30 km) depths.  相似文献   
3.
A mid‐ocean ridge basalt (MORB)‐type eclogite from the Moldanubian domain in the Bohemian Massif retains evidence of its prograde path in the form of inclusions of hornblende, plagioclase, clinopyroxene, titanite, ilmenite and rutile preserved in zoned garnet. Prograde zoning involves a flat grossular core followed by a grossular spike and decrease at the rim, whereas Fe/(Fe + Mg) is also flat in the core and then decreases at the rim. In a pseudosection for H2O‐saturated conditions, garnet with such a zoning grows along an isothermal burial path at c. 750 °C from 10 kbar in the assemblage plagioclase‐hornblende‐diopsidic clinopyroxene‐quartz, then in hornblende‐diopsidic clinopyroxene‐quartz, and ends its growth at 17–18 kbar. From this point, there is no pseudosection‐based information on further increase in pressure or temperature. Then, with garnet‐clinopyroxene thermometry, the focus is on the dependence on, and the uncertainties stemming from the unknown Fe3+ content in clinopyroxene. Assuming no Fe3+ in the clinopyroxene gives a serious and unwarranted upward bias to calculated temperatures. A Fe3+‐contributed uncertainty of ±40 °C combined with a calibration and other uncertainties gives a peak temperature of 760 ± 90 °C at 18 kbar, consistent with no further heating following burial to eclogite facies conditions. Further pseudosection modelling suggests that decompression to c. 12 kbar occurred essentially isothermally from the metamorphic peak under H2O‐undersaturated conditions (c. 1.3 mol.% H2O) that allowed the preservation of the majority of garnet with symplectitic as well as relict clinopyroxene. The modelling also shows that a MORB‐type eclogite decompressed to c. 8 kbar ends as an amphibolite if it is H2O saturated, but if it is H2O‐undersaturated it contains assemblages with orthopyroxene. Increasing H2O undersaturation causes an earlier transition to SiO2 undersaturation on decompression, leading to the appearance of spinel‐bearing assemblages. Granulite facies‐looking overprints of eclogites may develop at amphibolite facies conditions.  相似文献   
4.
Abstract In the first extensive, systematic study of inclusions in zircons from ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic rocks of the Kokchetav Massif of Kazakhstan (separated from 232 rock samples from all representative lithologies and geographic regions), we identified graphite, quartz, garnet, phengite, phlogopite, rutile, albite, K-feldspar, amphibole, zoisite, kyanite, calcite, dolomite, apatite, monazite, omphacite and jadeite, as well as the diagnostic UHP metamorphic minerals (i.e. microdiamond and coesite) by laser Raman spectroscopy. In some instances, coesite + quartz and diamond + graphite occur together in a single rock sample, and inclusion aggregates also comprise polycrystalline diamond crystals overgrowing graphite. Secondary electron microscope and cathodoluminescence studies reveal that many zircons display distinct zonation textures, which comprise core and wide mantle, each with distinctive inclusion microassemblages. Pre-UHP metamorphic minerals such as graphite, quartz, phengite and apatite are common in the core, whereas diamond, coesite, garnet and jadeite occupy the mantle. The inclusions in core are irrelevant to the UHP metamorphism. The zircon core is of detrital or relatively low-grade metamorphic origin, whereas the mantle is of HP to UHP metamorphic origin. The zonal arrangement of inclusions and the presence of coesite and diamond without back-reaction imply that aqueous fluids were low to absent within the zircons during both prograde and retrograde metamorphism, and that the zircon preserves a prograde pressure–temperature record of the Kokchetav metamorphism which, elsewhere, has been more or less obliterated in the host rock.  相似文献   
5.
The prograde amphibole that coexists with chlorite, epidote, muscovite, albite, quartz and hematite in Sanbagawa schists was examined to investigate the relationship between the prograde P-T paths of individual rocks and the metamorphic field gradient in the Sanbagawa metamorphic belt, central Shikoku. The amphibole changes from actinolite, through ferri-winchite and crossite, to barroisite and hornblende with increasing grade along the metamorphic field gradient. However, the sequence of prograde amphibole compositions in each sample varies in different mineral zones. The general scheme can be summarized as: magnesioriebeckite-riebeckite crossite in the upper chlorite zone of lower-grade rocks; crossite or glaucophane barroisite in the garnet zone of medium-grade rocks; and actinolite or winchite barroisite hornblende in the albite-biotite zone of higher-grade rocks. Changes of amphibole composition indicate that the prograde P-T path recorded in the higher-grade rocks was situated on the higher-temperature side of that of the lower-grade rocks and on the lower-pressure side of the metamorphic field gradient. The systematic change of P-T paths implies an increasing d P /d T during continuous subduction. These features can be interpreted as documenting prograde metamorphism within a young subduction zone that has a non-steady-state geotherm.  相似文献   
6.
苏鲁超高压榴辉岩的成因一直是一个令人困惑的问题。本文通过对榴辉岩的进变质作用——榴辉岩相向石榴石岩相转变的初步研究,为苏鲁榴辉岩带的地幔转换带(高压可达10GPa)成因提供了最初的证据。   相似文献   
7.
Garnet is a versatile and useful indicator mineral exploited in numerous geological studies. Despite its utility in providing thermobarometry and geochronology constraints, many difficulties remain in making meaningful interpretations of such data. In this paper, we characterize garnet grains from over 140 garnet‐bearing metasedimentary rock samples collected from the northern part of the Moine Supergroup (Scottish Caledonides). Large, euhedral garnet grains are interpreted to be indicative of prograde metamorphic growth during the most recent (Scandian, c. 430 Ma) phase of orogenesis. Anhedral garnet is largely restricted to the relatively low‐grade (greenschist – lower amphibolite facies) Moine thrust sheet, with an abrupt change in morphology and grain size when traced across the overlying Ben Hope and Sgurr Beag thrusts into the higher grade, more hinterland‐positioned thrust sheets. Our results suggest that caution should be exercised in using anhedral garnet in the Moine thrust sheet to estimate peak P–T conditions associated with low temperature (< ~500 °C) Scandian metamorphism, because in at least some cases garnet growth may have occurred during an earlier metamorphic event. However, chemical and isotopic data from this structurally lower anhedral garnet may still be useful for deconvolving a possible polymetamorphic history for this thrust sheet. In the immediately overlying Ben Hope thrust sheet, garnet has prograde euhedral (Scandian?) rims, indicating that the Ben Hope thrust must represent a significant thermal and/or chemical break. Inclusion distribution and mineral assemblages in garnet have been used to gain further insight on garnet growth conditions and to distinguish garnet that likely contains multiple generations of growth. Although our results are specific to the Caledonides of northern Scotland, this work highlights the general necessity of a comprehensive petrographic assessment in advance of interpreting large suites of garnet‐derived thermodynamic and geochronological data.  相似文献   
8.
In this contribution, we highlight the importance of in-situ monazite geochronology linked to P−T modelling for identification of timescales of metamorphic processes. Barrovian-type micaschists, migmatites and augengneiss from the Gumburanjun dome in the southeastern extremity of the Gianbul dome, NW Himalaya, have been studied in order to correlate the early stages of Himalayan metamorphism at different crustal levels and infer the timing of anatexis. P−T−t paths are constrained through combined pseudosection modelling and in-situ and in-mount monazite and xenotime laser ablation–split-stream inductively coupled plasma-mass spectrometry. Petrography and garnet zoning combined with pseudosection modelling show that garnet-staurolite schists record burial from ~530 to 560°C and 5.5 kbar to ~630 to 660°C and 7 kbar; staurolite-kyanite schists from ~530 to 560°C and 5 kbar to ~670 to 680°C and 7−9 kbar; and garnet-kyanite migmatites from 540−570°C and 5 kbar to ~680 to 750°C and 7−10 kbar, probably also to >750°C and >9 kbar above the muscovite stability field. The decompression paths of garnet-staurolite schists indicate cooling on decompression, while garnet rim chemistry and local sillimanite growth point to a stage of re-equilibration at ~600 to 670°C and 4−6 kbar in some of the staurolite-kyanite schists, and at ~670 to 700°C and 6 kbar in garnet-kyanite migmatites. Some of the staurolite-kyanite schists and garnet-kyanite migmatites also contain andalusite or andalusite-cordierite. Monazite and xenotime were analysed in thin sections in garnet, staurolite and kyanite, and in the matrix; and in mounts. BSE images and compositional maps of monazite (xenotime was too small) show variable internal structures from homogeneous through patchy zoning with embayed to sharp boundaries. Two groups of samples can be identified on the basis of the presence or absence of c. 44 − 37 Ma ages. The first group of samples—two garnet-staurolite schists—recorded only c. 31 − 27 Ma ages in porphyroblasts and no c. 40 Ma ages. The second group (samples of staurolite-kyanite schist, garnet-kyanite migmatites, augengneiss) have both the older, c. 44 − 37 Ma monazite ages in porphyroblasts and younger ages down to c. 22 Ma. These significantly different ranges of ages from porphyroblasts of 44−37 Ma, and 31−27 Ma, are interpreted as the duration of prograde P−T paths in Eocene and Oligocene, and indicate diachronous two-stage burial of rocks. Early migmatization occurred at 38 Ma. The c. 29 Ma is interpreted as the time when rocks from the lower and middle crustal levels were partially exhumed and came in to contact with rocks that were downgoing at this time. Localized monazite recrystallization is as young as 26−24 Ma. The youngest ages of 23−22 Ma are related to leucogranite emplacement.  相似文献   
9.
自由地核章动的时变特性   总被引:2,自引:0,他引:2  
李金岭  郑大伟 《天文学报》1998,39(3):308-312
对VLBI观测确定的IAU1980章动模型的天极偏移序列进行分析,结果显示自由地核章动在1990年以前的幅值比其后为强,其时变强度比周年受迫章动的为大.另外,小波变换的时频谱分析结果显示在天极偏移序列中存在一幅值约0.1毫角秒的准两年周期信号.仅从目前的数据分析结果尚不足以确定此信号与顺向自由地核章动之间的关系,进一步的观测检,验和深入的内核动力学研究是非常必要的.  相似文献   
10.
Abstract This work uses a simplified model of equilibrium to predict the assemblage sequence and compositional zoning in garnet that should result from prograde metamorphism of common bulk compositions of pelitic rocks. An internally-consistent set of model thermodynamic data are derived for natural mineral compositions from natural assemblages. Equilibrium assemblages can be calculated for pelitic compositions with excess quartz and either muscovite or K-feldspar at any pressure and water pressure. The compositions and abundances of phases in equilibrium assemblages can be calculated where the elements Mg, Fe and Mn are exchanged among phases. The prograde metamorphic assemblage sequences and the effects of pressure on assemblages, predicted by the simulation method presented here, are similar enough to natural observations to suggest that the simulations can be used to analyse natural equilibrium and growth processes. The calculated phase diagrams at moderate and high crustal pressures explain the mineral assemblage sequence produced by prograde metamorphism in common pelitic compositions. Garnet appears by continuous reaction of biotite and chlorite as the garnet-biotite-chlorite divariant field migrates toward higher Mg/Fe ratios over the bulk composition. Staurolite appears in common bulk compositions when garnet and chlorite become incompatible. An aluminum silicate phase can appear when staurolite and chlorite react. Staurolite breaks down at an extremum point to produce garnet. Continuous reaction of biotite and sillimanite causes growth of abundant garnet. The reaction sequence involving garnet, staurolite and aluminum silicates is probably different at low pressure, but the main reason that staurolite and garnet are rare is the restricted compositional range over which their assemblages exist. Andalusite appears by the divariant reaction of chlorite and cordierite appears at low temperature in low pressure assemblages for common bulk compositions by the extremumpoint breakdown reaction of chlorite. Compositional zoning of garnet and the systematic variation of biotite composition in metamorphic sequences indicate that garnet is probably fractionated during growth. Fractionation of garnet causes garnet-consuming, univariant reactions to become multivariant. The metastable persistence of garnet should reduce the abundance and stability range of staurolite. Fractionation of even small quantities of garnet should deplete the equilibrating bulk composition of Mn, but have little effect otherwise. The simulations show that the prograde assemblage sequence in pelitic rocks can be complex in detail, with some assemblages lasting over temperature intervals of only a few degrees. The major prograde reactions that release water are the breakdown of chlorite to form garnet at low grade and the breakdown of muscovite at high grade. The volume of water released by formation of garnet at high grade is also important. These reactions have the capacity to buffer water pressure. The density of anhydrous pelitic rock increases markedly when chlorite breaks down and by the continuous reaction forming garnet at high grade. The heat content is controlled principally by heat capacity and continuous reactions. Discontinuous reactions have little thermal buffering capacity. Simulations of garnet fractionation show that commonly-observed garnet zoning profiles can be formed by garnet growth in the assemblage garnet-biotite-chlorite in common bulk compositions. A reversal of Fe-zoning in garnet can occur when garnet resumes growth above staurolite grade in the assemblage garnetbiotite-sillimanite. Discontinuities in zoning profiles can be caused only by disequilibrium. The disequilibrium can be due to either metastable persistence during a hiatus in growth or to growth by irreversible reaction. Because the appearance of garnet is controlled by a continuous rather than a discontinuous reaction, the appearance of garnet is very sensitive to bulk composition. The early development of garnet is also sensitive to the pressure and water pressure of metamorphism. As a consequence the first garnet isograd is of limited thermometric value. Metastable persistence of kyanite and manite at high grades could reduce the abundance of garnet and allow biotite to persist. Metastable persistence would also limit the of cordierite formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号