首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   459篇
  免费   42篇
  国内免费   181篇
地球物理   49篇
地质学   591篇
海洋学   27篇
综合类   5篇
自然地理   10篇
  2024年   9篇
  2023年   11篇
  2022年   16篇
  2021年   18篇
  2020年   22篇
  2019年   22篇
  2018年   32篇
  2017年   25篇
  2016年   23篇
  2015年   23篇
  2014年   27篇
  2013年   32篇
  2012年   40篇
  2011年   33篇
  2010年   16篇
  2009年   34篇
  2008年   33篇
  2007年   27篇
  2006年   26篇
  2005年   34篇
  2004年   27篇
  2003年   24篇
  2002年   16篇
  2001年   14篇
  2000年   16篇
  1999年   18篇
  1998年   14篇
  1997年   15篇
  1996年   9篇
  1995年   6篇
  1994年   7篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1978年   1篇
排序方式: 共有682条查询结果,搜索用时 0 毫秒
1.
2.
北秦岭古聚会带壳幔再循环   总被引:10,自引:2,他引:10  
以同构造期代表古洋壳残片的蛇绿岩及产于古岛弧的玄武岩为基础,通过Nd,Pb同位素与微量元素示踪及岩浆源区分析,揭示出北秦岭元古宙上地幔以强亏损(εNd(t)+6.3~+7.3)和高的Yb/Hf,Nb/La和Th/La比值为特征,北秦岭地壳和上地幔明显具有Pb同位素比值高的特征.北秦岭丹凤群岛弧火山岩、二郎坪群弧后玄武岩以及松树沟蛇绿岩中变拉斑玄武岩εNd(t)、放射成因Pb同位素、Y/Tb和Ti-MgO研究表明,本区玄武岩存在两类性质不同的岩浆源.一类与亏损的北秦岭岩石圈上地幔源区有关;另一类与携带海洋沉积物的洋壳板块俯冲参与有关.由此,论证了北秦岭古聚会带壳幔之间物质再循环  相似文献   
3.
The deep structure of the gabbro–anorthosite–rapakivi granite (“AMCG-type”) Korosten Pluton (KP) in the northwestern Ukrainian Shield was studied by 3-D modelling of the gravity and magnetic fields together with previous seismic data. The KP occupies an area of ca. 12,500 km2 and comprises several layered gabbro-anorthositic intrusions enveloped by large volumes of rapakivi-type granitoids. Between 1.80 and 1.74 Ga, the emplacement of mafic and associated granitoid melts took place in several pulses. The 3-D geophysical reconstruction included: (a) modelling of the density distribution in the crust using the observed Bouguer anomaly field constrained by seismic data on Moho depth, and (b) modelling of the magnetic anomaly field in order to outline rock domains of various magnetisation, size and shape in the upper and lower crust. The density modelling was referred to three depth levels of 0 to 5, 5 to 18, and 18 km to Moho, respectively. The 3-D reconstruction demonstrates close links between the subsurface geology of the KP and the structure of the lower crust. The existence of a non-magnetic body with anomalously high seismic velocity and density is documented. Most plausibly, it represents a gabbroic stock (a parent magma chamber) with a vertical extent of ca. 20 km, penetrating the entire lower crust. This stock has a half-cylindrical shape and a diameter of ca. 90 km. It appears to be connected with a crust–mantle transitional lens previously discovered by EUROBRIDGE seismic profiling. The position of the stock relative to the subsurface outlines of the KP is somewhat asymmetric. This may be due to a connection between the magmatism and sets of opposite-dipping faults initially developed during late Palaeoproterozoic collisional deformation in the Sarmatian crustal segment. Continuing movements and disturbances of the upper mantle and the lower crust during post-collisional tectonic events between 1.80 and 1.74 Ga may account for the long-lived, recurrent AMCG magmatism.  相似文献   
4.
Northeastern (NE) China is a well-documented example of a collisional zone characterized by widespread post-orogenic granites and mafic–ultramafic complexes. Based on a study of the Hongqiling and Piaohechuan Cu–Ni sulfide-bearing mafic–ultramafic complexes in central Jilin province, we present geological, petrological, geochemical and geochronological data which indicates their post-orogenic origin.The Hongqiling complex comprises pyroxenite, olivine websterite, lherzolite, gabbro and leucogabbro. Zircon U–Pb SHRIMP analyses on a leucogabbro of the Hongqiling complex yield a weighted mean 206Pb–238U age of 216±5 Ma. The Piaohechuan complex is composed of gabbro, pyroxenite and dolerite, exposed as dikes. A plagioclase-bearing pyroxenite has a U–Pb zircon weighted mean 206Pb–238U age of 217±3 Ma, identical to that of the Hongqiling complex. These ages are coeval with the emplacement of A-type granites in the area, but slightly younger than the regional metamorphism (240 Ma) and syn-orogenic granitic magmatism (246±4 Ma). This suggests that these mafic–ultramafic complexes are post-orogenic in origin. The age data also indicated a short period of lithospheric stabilization of about 30 Ma after cessation of orogenic activity.Geochemical investigation indicates that the primary mafic magma was a lithospheric mantle-derived basalt resulting from the upwelling of asthenosphere due to lithospheric delamination during post-orogenic processes. The magmatic source was contaminated by a small amount of crustal material, and subsequent crystal fractionation resulted in the Cu–Ni mineralization.The widespread occurrence of mafic–ultramafic complexes in the Xing'an–Mongolian Orogenic Belt of NE China and in the Altay–Tianshan–Junggar Orogenic Belt of Northern Xinjiang indicates that mafic intrusions are an important magmatic suite that evolved during post-orogenic processes. Portions of this mafic magma could have underplated the lower crust, and served as the heat source for associated late-stage granitic magmas.  相似文献   
5.
Seismic tomography studies in the northeastern Japan arc have revealed the existence of an inclined sheet-like seismic low-velocity and high-attenuation zone in the mantle wedge at depths shallower than about 150 km. This sheet-like low-velocity, high-attenuation zone is oriented sub-parallel to the subducted slab, and is considered to correspond to the upwelling flow portion of the subduction-induced convection. The low-velocity, high-attenuation zone reaches the Moho immediately beneath the volcanic front (or the Ou Backbone Range) running through the middle of the arc nearly parallel to the trench axis, which suggests that the volcanic front is formed by this hot upwelling flow. Aqueous fluids supplied by the subducted slab are probably transported upward through this upwelling flow to reach shallow levels beneath the Backbone Range where they are expelled from solidified magma and migrate further upward. The existence of aqueous fluids may weaken the surrounding crustal rocks, resulting in local contractive deformation and uplift along the Backbone Range under the compressional stress field of the volcanic arc. A strain-rate distribution map generated from GPS data reveals a notable concentration of east–west contraction along the Backbone Range, consistent with this interpretation. Shallow inland earthquakes are also concentrated in the upper crust of this locally large contraction deformation zone. Based on these observations, a simple model is proposed to explain the deformation pattern of the crust and the characteristic shallow seismic activity beneath the northeastern Japan arc.  相似文献   
6.
Mount Bangou, an Eocene volcano (40K–40Ar ages between 44.7 and 43.1 ± 1 Ma) is the oldest dated volcano of the Cameroon Line. In this region, two magmatic series, evolving by fractional crystallization, show transitional affinities that are exceptionally known in this sector. Mineral compositions of basaltic rocks (scarce modal olivine and occurrence of normative hypersthene) as well as geochemical characteristics (low Ba, La, Ta contents and high Y/Nb ratios) are in agreement with this trend. The succession of magmas evolving in time from transitional to more typical alkaline compositions is evidenced in a continental setting. To cite this article: J. Fosso et al., C. R. Geoscience 337 (2005).  相似文献   
7.
Post-collisional magmatism in the southern Iberian and northwesternAfrican continental margins contains important clues for theunderstanding of a possible causal connection between movementsin the Earth's upper mantle, the uplift of continental lithosphereand the origin of circum-Mediterranean igneous activity. Systematicgeochemical and geochronological studies (major and trace element,Sr–Nd–Pb-isotope analysis and laser 40Ar/39Ar-agedating) on igneous rocks provide constraints for understandingthe post-collisional history of the southern Iberian and northwesternAfrican continental margins. Two groups of magmatic rocks canbe distinguished: (1) an Upper Miocene to Lower Pliocene (8·2–4·8Ma), Si–K-rich group including high-K (calc-alkaline)and shoshonitic series rocks; (2) an Upper Miocene to Pleistocene(6·3–0·65 Ma), Si-poor, Na-rich group includingbasanites and alkali basalts to hawaiites and tephrites. Maficsamples from the Si–K-rich group generally show geochemicalaffinities with volcanic rocks from active subduction zones(e.g. Izu–Bonin and Aeolian island arcs), whereas maficsamples from the Si-poor, Na-rich group are geochemically similarto lavas found in intraplate volcanic settings derived fromsub-lithospheric mantle sources (e.g. Canary Islands). The transitionfrom Si-rich (subduction-related) to Si-poor (intraplate-type)magmatism between 6·3 Ma (first alkali basalt) and 4·8Ma (latest shoshonite) can be observed both on a regional scaleand in individual volcanic systems. Si–K-rich and Si-poorigneous rocks from the continental margins of southern Iberiaand northwestern Africa are, respectively, proposed to havebeen derived from metasomatized subcontinental lithosphere andsub-lithospheric mantle that was contaminated with plume material.A three-dimensional geodynamic model for the westernmost Mediterraneanis presented in which subduction of oceanic lithosphere is inferredto have caused continental-edge delamination of subcontinentallithosphere associated with upwelling of plume-contaminatedsub-lithospheric mantle and lithospheric uplift. This processmay operate worldwide in areas where subduction-related andintraplate-type magmatism are spatially and temporally associated. KEY WORDS: post-collisional magmatism; Mediterranean-style back-arc basins; subduction; delamination; uplift of marine gateways  相似文献   
8.
东昆仑祁漫塔格地区构造岩浆作用与成矿关系初步探讨   总被引:4,自引:0,他引:4  
以钾、钠含量变化为主要指标获取祁漫塔格地区各个地史时期花岗岩类的成因类型.结果表明,区内构造岩浆作用在时间上具有明显的阶段性,加里东中晚期是本区第一次侵入岩浆作用的高峰期,印支中晚期为本区花岗岩浆作用的鼎盛时期,加里东中晚期和印支中晚期也是区内两次区域成矿作用的大爆发期.岩体分布具有明显的方向性.主要由北东向和北西向两...  相似文献   
9.
A.P Singh  D.M Mall   《Tectonophysics》1998,290(3-4):285-297
In 1967 a major earthquake in the Koyna region attracted attention to the hitherto considered stable Indian shield. The region is covered by a thick pile of Deccan lava flows and characterized by several hidden tectonic features and complex geophysical signatures. Although deep seismic sounding studies have provided vital information regarding the crustal structure of the Koyna region, much remains unknown. The two available DSS profiles in the region have been combined along the trend of Bouguer gravity anomalies. Unified 2-D density modelling of the Koyna crust/mantle suggests a ca. 3 km thick and 40 km wide high velocity/high density anomalous layer at the base of the crust along the coastline. The thickness of this anomalous layer decreases gradually towards the east and ahead of the Koyna gravity low the layer ceases to be visible. Based on the seismic and gravity data interpretation in the geodynamical/rheological boundary conditions the anomalous layer is attributed to igneous crustal accretion at the base of the crust. It is suggested that the underplated layer is the imprint of the magmatism caused by the deep mantle plume when the northward migrating Indian plate passed over the Reunion hotspot.  相似文献   
10.
山旺盆地的成因及其地质意义   总被引:3,自引:0,他引:3  
罗照华  李凤麟 《现代地质》1992,6(1):30-38,T001
前人一般认为山旺盆地是一个深度不大的封闭性淡水剥蚀盆地。笔者认为它是一个火山口成因的封闭—半封闭盆地。盆地的发展经历了3个发展阶段:早期为火山喷发作用形成火山口,并造成火山碎屑物堆积:中期堆积了较厚层的沉积物,主要为粘土质岩石,如硅藻质页岩、泥岩,此外,还有少量的砂岩、砾岩;晚期为玄武岩充填,致使整个盆地完全封闭。在盆地发展过程中,早期为封闭环境,中、晚期为半封闭环境。火山碎屑物的再堆积和分解对于生物死亡和埋藏可能具有重要的意义;该区第三纪中心式火山作用非常强烈,通过详细的区域地质调查,有可能找到更多的化石产地和硅藻土矿。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号