首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   14篇
  国内免费   5篇
地球物理   22篇
地质学   6篇
海洋学   26篇
自然地理   5篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   6篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2003年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
Salinity difference between terrestrial river discharge and oceanic tidal water plays a role in modifying the local flow field and, as a consequence, estuarine morphodynamics. Although widely recognized, recent numerical studies exploring the long-term morphological evolution of river-influenced estuaries with two-dimensional, depth-averaged models have mostly neglected salinity. Using a three-dimensional morphodynamic model, we aim to gain more insight into the effect of salinity on the morphodynamics of fluvio-deltaic systems. Model results indicate that the resultant estuarine morphology established after 600 years differs remarkably when a salinity gradient is included. A fan-shaped river-mouth delta exhibits less seaward expansion and is cut through by narrower channels when salinity is included. The inclusion of salinity tends to generate estuarine circulation, which favours landward sediment transport and hence limits the growth of the delta while enhancing the development of intertidal areas. The formation of deltaic channel–shoal patterns resulting from morphodynamic evolution tends to strengthen salinity stratification, which is characterized by an increased gradient Richardson number. The direction of the depth-averaged residual sediment transport over a tide may be opposite to the direction of residual velocity, indicating the significant influence of baroclinic effects on the net sediment transport direction (and hence morphological change). The effect of salinity on morphological evolution becomes less profound when the strength of tidal or fluvial forcing is dominant over the other. The effects of sediment type and flocculation, which are particularly important when salinity gradients are present, are also discussed. Overall, this study highlights that neglecting salinity to simulate long-term estuarine morphodynamics requires more careful justification, particularly when the environment is characterized by fine sediment types (favouring suspended transport), and relatively large river discharge and estuarine depth (favouring baroclinic effects). © 2020 John Wiley & Sons, Ltd.  相似文献   
2.
The cross-sectional stability of two tidal inlets connecting the same back-barrier lagoon to the ocean is investigated. The condition for equilibrium is the cross-sectional area tidal prism relationship. In an earlier study [Van de Kreeke, J., 1990. Can multiple inlets be stable? Estuarine, Coastal and Shelf Science 30: 261–273.], using the same equilibrium condition, it was concluded that where two inlets connect the same basin to the ocean ultimately one inlet will close. One of the major assumptions in that study was that the water level in the basin fluctuated uniformly. In hindsight this assumption might be too restrictive. For example, in the Wadden Sea the back barrier lagoon consists of a series of basins, rather than one single basin, separated by topographic highs. These topographic highs limit but do not exclude the exchange of water between the sub-basins. For this reason in the present study, a topographic high in the form of a weir was added, separating the back-barrier lagoon in two sub-basins. The water level in the sub-basins, rather than in the back-barrier as a whole, is assumed to fluctuate uniformly. For this schematization the hydrodynamic equations are solved using a finite difference method. The results, together with the equilibrium condition, yield the equilibrium flow curve for each of the inlets. The intersections of the two equilibrium flow curves represent combinations of cross-sectional areas for which both inlets are in equilibrium. The stability of the equilibriums was investigated using a non-linear stability analysis resulting in a flow diagram. Calculations were carried out for different inlet and weir characteristics. Sinussoidal tides were the same for both inlets. The results show that for relatively large wetted cross-sectional areas over the topographic high, approaching the situation of a single basin, there are no combinations of inlet cross-sectional areas for which both inlets are in a stable equilibrium. This supports the conclusion in the earlier study. For relatively small wetted cross-sectional areas over the topographic high there is one set of stable equilibriums. In that case the two-inlet bay system approaches that of two single-inlet bay systems.  相似文献   
3.
The idealized model of Besio et al. (On the formation of sand waves and sand banks. Journal of Fluid Mechanics 2006; 557: 1–17) is used to predict the wavelength of tidal dunes (sand waves) generated by tidal currents in estuaries and shallow seas. The predictions are then analysed and a formula is proposed to estimate the wavelength of tidal dunes as a function of the parameters of the problem. The wavelength of the dunes is found to increase when the water depth is increased and/or the strength of the tidal current is decreased. On the other hand, the size of the bottom material (if medium sand is considered) and the tidal ellipticity are found to have a relatively small influence on the length of the bottom forms. The formula proposed provides results which are consistent with field observations of different authors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
4.
The purpose of this study was to quantify relationships between season, sediment availability, sediment transport pathways, and beach/foredune morphology at Greenwich Dunes, PEI. This was done for periods ranging from a few days to multiple decades using erosion pins, bedframe measurements, annual surveys, and digital photogrammetry using historical aerial photographs. The relative significance of seasonal/annual processes versus response of the foredune system to broader geomorphic controls (e.g. relative sea level rise, storms, etc.) was also assessed. The data show that there are clear seasonal differences in the patterns of sand supply from the beach to the foredune at Greenwich and that there are differences in sediment supply to the foredune between the east and west reaches of the study area, resulting in ongoing differences in foredune morphology. They also demonstrate that models that incorporate wind climate alone, or even models that include other factors like beach moisture, would not be able to predict the amount of sediment movement from the beach to the foredune in this environment unless there were some way to parameterize system morphology, especially the presence or absence of a dune ramp. Finally, the data suggest that the foredune can migrate landward while maintaining its form via transfers of sediment from the stoss slope, over the crest, and onto the lee slope. Although the rate of foredune development or recovery after disturbance changes over time due to morphological feedback, the overall decadal evolution of the foredune system at Greenwich is consistent with, and supports, the Davidson‐Arnott (2005) conceptual model of dune transgression under rising sea level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
5.
Channel bifurcations can be found in river network systems from high gradient gravel-bed rivers to fine-grained low gradient deltas. In these systems, bifurcations often evolve asymmetrically such that one downstream channel silts up and the other deepens and, in most cases, they eventually avulse. Past analytical and numerical studies showed that symmetric bifurcations are unstable in high and low Shields stress conditions resulting in asymmetric bifurcations and avulsion, while they can be stable in the mid-Shields range, but this range is smaller for larger width-to-depth ratio. Here, using a one-dimensional (1D) numerical model, we show that effects of sediment grain size and of channel slope are much larger than expected for low-gradient systems when a sediment transport relation is used that separates between bedload and suspended load transport. We found that the range of Shields stress conditions with unstable symmetric bifurcations expanded for lower channel slopes and for finer sediment. In high sediment mobility, suspended load increasingly dominates the sediment transport, which increases the sediment transport nonlinearity and lowers the relative influence of the stabilizing transverse bedslope-driven flux. Contrary to previous works, we found another stable symmetric solution in high Shields stress, but this only occurs in the systems with small width-to-depth ratio. This indicates that suspended load-dominated bifurcations of lowland rivers are more likely to develop into highly asymmetric channels than previously thought. This explains the tendency of channel avulsion observed in many systems.  相似文献   
6.
Flood and ebb currents provide different contributions to the initiation and evolution of tidal channel networks, generating diverse network structures and channel cross-sections. In order to separate the effects of these contributions, a physical model of a sloping tidal-flat basin was set up in the laboratory. Depending on the degree of tidal asymmetry imposed offshore, either flood or ebb currents can be enhanced. The experimental results show that the ebb current has a higher capability to initiate and shape tidal networks than the flood current. Headward erosion is mainly induced by the ebb flow. The slightly inclined flat surface tends to reduce the energy of the flood current and to enhance the ebb current, thus prolonging the duration of morphodynamic activity as well as sediment motion. Overall, flood-dominated tides favour the formation of small-scale channel branches in the upper basin zone, while long lasting ebb-dominated tides result in more complex, wider and deeper tidal networks. © 2019 John Wiley & Sons, Ltd.  相似文献   
7.
The impacts of climate‐induced changes in discharge and base level in three tributaries of the Saint‐Lawrence River, Québec, Canada, are modelled for the period 2010–2099 using a one‐dimensional morphodynamic model. Changes in channel stability and bed‐material delivery to the Saint‐Lawrence River over this period are simulated for all combinations of seven tributary hydrological regimes (present‐day and those predicted using three global climate models and two greenhouse gas emission scenarios) and three scenarios of how the base level provided by the Saint‐Lawrence River will alter (no change, gradual fall, step fall). Even with no change in base level the projected discharge scenarios lead to an increase in average bed material delivery for most combinations of river and global climate model, although the magnitude of simulated change depends on the choice of global climate model and the trend over time seems related to whether the river is currently aggrading, degrading or in equilibrium. The choice of greenhouse gas emission scenario makes much less difference than the choice of global climate model. As expected, a fall in base level leads to degradation in the rivers currently aggrading or in equilibrium, and amplifies the effects of climate change on sediment delivery to the Saint‐Lawrence River. These differences highlight the importance of investigating several rivers using several climate models in order to determine trends in climate change impacts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
8.
淤泥质潮滩地貌演变中的水动力及生物过程研究进展   总被引:2,自引:0,他引:2  
王宁舸  龚政  张长宽  赵堃  耿亮 《海洋工程》2016,34(1):104-116
淤泥质潮滩对于海岸防护、增加土地资源、保持生物多样性等具有重要作用。从淤泥质潮滩演变的主要驱动因子——潮流、波浪、生物作用及地下过程四个方面回顾和总结了潮滩演变动力地貌过程的相关研究进展,提出应关注潮滩短期演变规律、波浪与浮泥作用机理、生物生长与潮滩演变定量关系,以及地下过程作用机理等。  相似文献   
9.
The coastal environment shows a wide range of bed patterns, for which sandwaves and sandbanks are among the most common. Less known in this context is the high benthic diversity in the coastal environment, which gives rise to the question to what extend the benthos interacts with the shape of the seabed. This paper reviews field and flume experiments on bio-geomorphological influences between benthos and sediment and tests the hypothesis that both the occurrence and the dimensions of sandwaves are dependent on the benthic diversity in the North Sea. Mathematical inclusions to account for biological activity in idealized models reveal that biota is able to influence the wavelength of sandwaves significantly, compared to the default case. More importantly, the models indicate that biota is able to induce bed patterns under conditions when the physical parameters suggest a stable flat bed and vice versa. Present model explorations indicate that future research should focus on the parameterization of subtidal biological activity on sediment dynamics and thereby on seabed patterns. Such knowledge will enable process-based modeling of the spatial and temporal variation in biological activity on seabed morphodynamics and validate the proposed modeling approach with field measurements.  相似文献   
10.
An artificial sand wave on the Dutch shoreface of the North Sea has been studied in conditions with relatively strong tidal currents in the range of 0.5 to 1 m/s and sediments in the medium sand size range of 0.2 to 0.5 mm. The sand wave is perpendicular to the tidal current and has a maximum height and length of the order of 5 m and 1 km, respectively. The sand wave is dynamically active and shows migration rates of the order of a few metres per year. A numerical morphodynamic model (DELFT3D model) has been used to simulate the morphological behaviour of the sand wave in the North Sea. This model approach is based on the numerical solution of the three-dimensional shallow water equations in combination with a surface wave propagation model (wind waves) and the advection–diffusion equation for the sediment particles with online bed updating after each time step. The model results show that the sand wave grows in the case of dominant bed-load transport (weak tidal currents; relatively coarse sediment; small roughness height; low waves) and that the sand wave decays in the case of dominant suspended transport (strong currents, relatively fine sediment, large roughness height; storm waves).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号