首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   3篇
  国内免费   5篇
地质学   11篇
  2020年   1篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2006年   1篇
  2003年   1篇
  1999年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
We report the first finding of diamond and moissanite in metasedimentary crustal rocks of Pohorje Mountains (Slovenia) in the Austroalpine ultrahigh‐pressure (UHP) metamorphic terrane of the Eastern Alps. Microscopic observations and Raman spectroscopy show that diamond occurs in situ as inclusions in garnet, being heterogeneously distributed. Under the optical microscope, diamond‐bearing inclusions are of cuboidal to rounded shape and of pinkish, yellow to brownish colour. The Raman spectra of the investigated diamond show a sharp, first order peak of sp3‐bonded carbon, in most cases centred between 1332 and 1330 cm?1, with a full width at half maximum between 3 and 5 cm?1. Several spectra show Raman bands typical for disordered graphitic (sp2‐bonded) carbon. Detailed observations show that diamond occurs either as a monomineralic, single‐crystal inclusion or it is associated with SiC (moissanite), CO2 and CH4 in polyphase inclusions. This rare record of diamond occurring with moissanite as fluid‐inclusion daughter minerals implies the crystallization of diamond and moissanite from a supercritical fluid at reducing conditions. Thermodynamic modelling suggests that diamond‐bearing gneisses attained P–T conditions of ≥3.5 GPa and 800–850 °C, similar to eclogites and garnet peridotites. We argue that diamond formed when carbonaceous sediment underwent UHP metamorphism at mantle depth exceeding 100 km during continental subduction in the Late Cretaceous (c. 95–92 Ma). The finding of diamond confirms UHP metamorphism in the Pohorje Mountains, the most deeply subducted part of Austroalpine units.  相似文献   
2.
华北克拉通在中奥陶世至晚石炭世期间一直出露地表,经历了长期的风化作用,形成大规模的铁-铝黏土矿,其成矿物源一直是研究的热点,尤其是本溪组底部铁矿和铁质黏土矿与上部铝黏土矿是否为同一来源尚未查清。本研究选取克拉通南缘大安铝黏土矿床作为研究对象,展开微区矿物及元素地球化学组成分析,进一步探讨铁-铝黏土矿物质来源。大安矿床内含矿岩系自下而上包括铁质黏土岩、铝土矿、铝质黏土矿;局部喀斯特高地缺失铝土矿,铝质黏土矿直接覆盖于铁质黏土岩之上。铁质黏土岩在洼地以菱铁矿、黄铁矿和伊利石为主,在隆起区以赤铁矿、伊利石和高岭石为主。铝土矿以硬水铝石、伊利石和锐钛矿为主;铝质黏土矿主要矿物为伊利石。矿物微区分析在黏土矿底部发现大量的碳化硅和少量自然硅、硅铁矿、铬铁矿;区域对比揭示北秦岭造山带内商丹缝合带和二郎坪群中的蛇绿岩为铝黏土矿形成提供了成矿物质。本溪组底部铁质黏土与上部铝黏土矿稳定元素比率(例如Zr/TiO2、Hf/TiO2、Nb/TiO2、Ta/TiO2)存在明显差异,揭示二者为不同来源: 底部铁质黏土岩和铁矿层为底板碳酸盐岩原地风化的产物;而上部铝黏土矿是异地搬运物,北秦岭造山带在晚石炭世的整体抬升为华北铝黏土矿形成提供了重要的成矿物质。  相似文献   
3.
《International Geology Review》2012,54(17):2184-2210
ABSTRACT

The Purang ultramafic massif, located in the Yarlung-Zangbo Suture Zone (YZSZ) of the Tibetan Plateau, consists mainly of harzburgites and minor lherzolites. The spinel-bearing lherzolites of the NW part of the massif display a granular texture, consisting of large olivine and pyroxene crystals with curvilinear grain boundaries. These lherzolites contain chromian spinel (Cr-spinel) of low Cr# [100 × Cr/(Cr +Al) = 24.7–30.2], enstatite with high Mg# [100 × Mg/(Mg + Fe2+) = 90.0–91.2] and relatively high Al2O3 content (3.3–4.1 wt%), and diopside with high Mg# (90.2–93.3) and Al2O3 content (4.6–5.0 wt%). These compositions are analogous to those of spinel and pyroxenes from residual peridotites. However, the Purang lherzolites show U-shaped primitive mantle (PM)-normalized rare earth element (REE)-profiles, which are not consistent with a potential origin as melting residues. The high LREE contents and positive Ti anomalies shown by the investigated lherzolites coupled with the low TiO2 content of their mineral constituents imply that these rocks possibly stored LREE- and Ti-bearing arc-related melts/fluids in their groundmass.

A mineral assemblage composed of diamond, super-reduced [(SuR) moissanite, native Cr] and crustal-derived minerals (zircon, corundum, rutile), has been separated from the Purang lherzolites. Uranium-Pb geochronological dating of zircons yielded an age range between 1718 and 465 Ma, indicating that they represent ancient crustal material delivered into the upper mantle via previous subduction events. Diamonds and old zircons (± crustal minerals) were carried to shallow mantle levels by asthenospheric magmas produced during a slab rollback-induced decompression melting process. The recovery of SuR minerals is consistent with fluid percolation and crystallization of alteration-related minerals in the lithospheric parts of a (hydrated) mantle wedge, resulting in the formation of highly reduced micro-environments.  相似文献   
4.
近期,在珠宝市场上的一件"黑白钻"首饰中发现混有黑色合成碳硅石,该情况应引起国内外各珠宝检测机构的足够重视。采用宝石显微镜、红外光谱仪和拉曼光谱仪等测试方法对黑色合成碳硅石样品做了较详细测试与分析。结果显示,放大检查可见黑色合成碳硅石的表面粗糙,棱角圆钝,并伴有各种生长缺陷,部分可见残留的单晶硅;黑色合成碳硅石的红外反射光谱非常特征,且其拉曼散射光谱也缺失钻石位于1 332cm-1处的特征峰,可与黑色钻石相区别。  相似文献   
5.
In recent years diamonds and other unusual minerals(carbides,nitrides,metal alloys and native elements) have been recovered from mantle peridotites and chromitites(both high-Cr chromitites and high-Al chromitites) from a number of ophiolites of different ages and tectonic settings.Here we report a similar assemblage of minerals from the Skenderbeu massif of the Mirdita zone ophiolite,west Albania.So far,more than 20 grains of microdiamonds and 30 grains of moissanites(SiC) have been separated from the podiform chromitite.The diamonds are mostly light yellow,transparent,euhedral crystals,200~300 μm across,with a range of morphologies;some are octahedral and cuboctahedron and others are elongate and irregular.Secondary electron images show that some grains have well-developed striatums.All the diamond grains have been analyzed and yielded typical Raman spectra with a shift at ~1325 cm~(-1).The moissanite grains recovered from the Skenderbeu chromitites are mainly light blue to dark blue,but some are yellow to light yeUow.All the analyzed grains have typical Raman spectra with shifts at 766 cm~(-1),787 cm~(-1),and 967 cm~(-1).The energy spectrums of the moissanites confirm that the grains are composed entirely of silicon and carbon.This investigation expands the occurrence of diamonds and moissanites to Mesozoic ophiolites in the Neo-Tethys.Our new findings suggest that diamonds and moissanites are present,and probably ubiquitous in the oceanic mantle and can provide new perspectives and avenues for research on the origin of ophiolites and podiform chromitites.  相似文献   
6.
大别山南部天然碳硅石   总被引:2,自引:0,他引:2  
根据1975年的矿点检查报告,在大别山南部董家山蛇纹岩体的人工重砂和岩石薄片中,发现确有天然碳硅石存在。大部分碳硅石单晶为六方板状,一部分为不规则形,最大粒径450μm×100μm,一般250μm×150μm。薄片中的粒径较小。单晶的拉曼光谱位移峰值稳定,薄片中碳硅石的拉曼位移峰也都在误差范围内。单晶以二轴晶(+)为主,部分为一轴晶(+),薄片中晶体几乎都为二轴晶(+)。虽然天然碳硅石可以产出于任何岩石中,但是原位的天然碳硅石只见于陨石和金伯利岩中,本文发现的很可能是首例地球蛇纹岩中的原位天然碳硅石。天然碳硅石与人工合成的碳化硅在结晶行为、光学性质和红外光谱方面有明显不同,成分也有差异,但拉曼光谱虽有差别却不明显。由于碳硅石与金刚石有类似的四面体方向sp3异化键和相同的滑动面,可能有类似的变形条件。根据碳硅石有晶内变形,推测其形成于≥300km的深度,这对认识大别山南部构造演化有重要意义。  相似文献   
7.
We report the discovery of an in-situ natural moissanite as an inclusion in the Cr-spinel from the dunite envelope of a chromitite deposit in Luobusa ophiolite, Tibet. The moissanite occurs as a twin crystal interpenetrated by two quadrilateral signal crystals with sizes of 17 μm× 10 μm and 20 μm× 7 μm, respectively. The moissanite is green with parallel extinction. The absorption peaks in its Raman spectra are at 967-971 cm-1, 787-788 cm-1, and 766 cm-1. The absorption peaks in the infrared spectra are at 696 cm-1, 767 cm-1, 1450 cm-1, and 1551 cm-1, which are distinctly different from the peaks for synthetic silicon carbide. Moissanites have been documented to form in ultra-high pressure, high temperature, and extremely low fO2 environments and their 13C-depleted compositions indicate a lower mantle origin. Combined with previous studies about other ultra-high pressure and highly reduced minerals in Luobusa ophiolite, the in-situ natural moissanite we found indicates a deep mantle origin of some materials in the mantle sequence of Luobusa ophiolite. Further, we proposed a transformation model to explain the transfer process of UHP materials from the deep mantle to ophiolite sequence and then to the supra-subduction zone environment. Interactions between the crown of the mantle plume and mid-ocean ridge are suggested to be the dominant mechanism.  相似文献   
8.
Diamond,moissanite and a variety of other minerals,similar to those reported from ophiolites in Tibet and northern Russia,have recently been discovered in chromitites of the Hegenshan ophiolite of the Central Asian Orogenic Belt,north China. The chromitites are small,podiform and vein-like bodies hosted in dunite,clinopyroxene-bearing peridotite,troctolite and gabbro. All of the analysed chromite grains are relatively Al-rich,with Cr# [100Cr/(Cr+Al)] of about 47–53. Preliminary studies of mainly disseminated chromitite from ore body No. 3756 have identified more than 30 mineral species in addition to diamond and moissanite. These include oxides(mostly hematite,magnetite,rutile,anatase,cassiterite,and quartz),sulfides(pyrite,marcasite and others),silicates(magnesian olivine,enstatite,augite,diopside,uvarovite,pyrope,orthoclase,zircon,sphene,vesuvianite,chlorite and serpentine) and others(e.g.,calcite,monazite,glauberite,iowaite and a range of metallic alloys). This study demonstrates that diamond,moissanite and other exotic minerals can occur in high-Al,as well as high-Cr chromites,and significantly extends the geographic and age range of known diamond-bearing ophiolites.  相似文献   
9.
In recent years diamonds and other exotic minerals have been recovered from mantle peridotites and high-Cr chromitites of a number of ophiolites of different age and different tectonic environments. Here we report a similar collection of minerals from the Sartohay ophiolite of Xinjiang Province,western China,which is characterized by having high-Al chromitites. Several samples of massive podiform chromitite with an aggregate weight of nearly 900 kg yielded diamonds,moissanite and other highly reduced minerals,as well as common crustal minerals. Thus far,more than 20 grains each of diamond and moissanite have been recovered from heavy mineral separates of the chromitites. The diamonds are all 100-200 μm in size and range in color from pale yellow to reddish-orange to colorless. Most of the grains are anhedral to subhedral octahedra,commonly with elongate forms exhibiting well-developed striations. They all display characteristic Raman spectra with shifts between 1325 cm-1 and 1333 cm-1,mostly 1331.51 cm-1 or 1326.96 cm-1. The moissanite grains are light blue to dark blue,broken crystals,50-150 μm across,commonly occurring as small flakes or fragments. Their typical Raman spectra have shifts at 762 cm-1,785 cm-1,and 966 cm-1. This investigation extends the occurrence of diamonds and moissanite to a Paleozoic ophiolite in the Central Asian Orogenic Belt and demonstrates that these minerals can also occur in high-Al chromitites. We conclude that diamonds and moissanite are likely to be ubiquitous in ophiolitic mantle peridotites and chromitites.  相似文献   
10.
合成碳硅石的鉴定方法   总被引:1,自引:0,他引:1       下载免费PDF全文
根据合成碳硅石与钻石的物理化学性质不同,放大检查内部特征,结合对密度、光学性质、硬度等的检测,可以有效鉴别合成碳硅石。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号