首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   4篇
  2007年   1篇
  2006年   2篇
  2001年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Two types of garnet porphyroblast occur in the Schneeberg Complex of the Italian Alps. Type 1 porphyroblasts form ellipsoidal pods with a centre consisting of unstrained quartz, decussate mica and small garnet grains, and a margin containing large garnet grains. Orientation contrast imaging using the scanning electron microscope shows that the larger marginal garnet grains comprise a number of orientation subdomains. Individual garnet grains without subdomains are small (< 50 µm), faceted and idioblastic, and have simple zoning profiles with Ca‐rich cores and Ca‐poor rims. Subdomains of larger garnet grains are similar in size to the individual, small garnet grains. Type 2 porphyroblasts comprise only ellipsoidal garnet, with small subdomains in the centre and larger subdomains at the margin. Each subdomain has its own Ca high, Ca dropping towards subdomain boundaries. Garnet grains, with or without subdomains, all have the same Ca‐poor composition at rims in contact with other minerals. The compositional zonation patterns are best explained by simultaneous, multiple nucleation, followed by growth and amalgamation of individual garnet grains. The range of individual garnet and garnet subdomain sizes can be explained by a faster growth rate at the porphyroblast margin than in the centre. The difference between Type 1 and Type 2 porphyroblasts is probably related to the growth rate differential across the porphyroblast. Electron backscatter diffraction shows that small, individual garnet grains are randomly oriented. Large marginal garnet grains and subdomain‐bearing garnet grains have a strong preferred orientation, clustering around a single garnet orientation. Misorientations across subdomain boundaries are small and misorientation axes are randomly oriented with respect to crystallographic orientations. The only explanation that fits the observational data is that individual garnet grains rotated towards coincident orientations once they came into contact with each other. This process was driven by the reduction of subdomain boundary energy associated with misorientation loss. Rotation of garnet grains was accommodated by diffusion in the subdomain boundary and diffusional creep and rigid body rotation of other minerals (quartz and mica) around the garnet. An analytical model, in which the kinetics of garnet rotation are controlled by the rheology of surrounding quartz, suggests that, at the conditions of metamorphism, the rotation required to give a strong preferred orientation can occur on a similar time‐scale to that of porphyroblast growth.  相似文献   
2.
This paper studies the flow heterogeneity around porphyroclasts associated with greenschist facies deformation of a calcite marble shear zone. Microstructural data from electron backscatter diffraction analyses (EBSD) are used to constrain the flow mechanics of this dominantly non-coaxial type of deformation. The microstructure of the undisturbed ultramylonite (grain-size range 5–100 μm, mean 40 μm) is interpreted to represent steady-state (time-independent) flow conditions with flow planes parallel to the shear zone boundary. Single calcite porphyroclasts (grain-size 1–3 mm) caused flow perturbation in the fine-grained marble ultramylonite. It is the shape, in particular, of these rigid porphyroclasts that controls their rotational behaviour during deformation and, therefore, the development of specific flow fabrics. The flow planes around elongated-rhomboidal, stable porphyroclasts change the orientation to become roughly parallel to the porphyroclast margin, whereas the geometry of flow planes around nearly equant, rotating porphyroclasts describes a δ-type flow pattern. We infer that to some extent decoupling at the clast–matrix interface has occurred to guarantee a stable orientation of elongated porphyroclasts, but was not sufficient to reduce the rotation rate of equant clasts to zero. According to the flow deflection, the general crystallographic preferred orientation (CPO) with its single c-axis maximum perpendicular to the flow plane is rotated about an axis which is (sub)parallel to the kinematic rotation axis of the shear zone. Ultramylonite microstructures, CPOs and misorientation data are best explained by the dual operation of grain-size-insensitive (dislocation creep with recovery and recrystallization) and grain-size-sensitive (diffusion creep) mechanisms. The limited grain-size reduction around porphyroclasts suggests that the grain-size-insensitive mechanisms controlled rheology.  相似文献   
3.
Within a mica schist from the coesite-bearing Brossasco-Isasca Unit (Western Alps), microstructural analysis shows that Alpine garnet grains are aligned with the crenulated foliation. Garnet crystallographic orientation was analysed with electron backscatter diffraction (EBSD): the obtained crystallographic dispersion patterns and distribution patterns of misorientation axes suggest a strong parallelism of {110} garnet planes with a 56°W-dipping foliation. The data are interpreted as evidence for an epitaxial growth of garnet upon (001) biotite planes, sometime during and/or after dispersion of the biotite/garnet crystals from their initially foliation-parallel orientation by rotation about the Alpine crenulation axis. This interpretation is based on the comparison of the measured EBSD data with: (i) theoretical dispersion trajectories of garnet crystallographic data, (ii) numerically modelled pole figures, and (iii) numerically modelled misorientation axis distribution patterns. Our data suggest that epitaxial growth of garnet upon biotite is allowed by distortion of the pseudohexagonal basal oxygen ring structure on (001) biotite surfaces, and that distortion is driven by introduction of missing ions. Our data further suggest that the spatial distribution of precursor phases influences the distribution patterns of garnet within mica schists.  相似文献   
4.
In this study, the chemistry and microstructure of garnet aggregates within a metamorphic vein are investigated. Garnet‐bearing veins in the Sanbagawa metamorphic belt, Japan, occur subparallel to the foliation of a host mafic schist, but some cut the foliation at low angle. Backscattered electron image and compositional mapping using EPMA and crystallographic orientation maps from electron‐backscattered diffraction (EBSD) reveal that numerous small garnet (10–100 μm diameter) coalesce to form large porphyroblasts within the vein. Individual small garnet commonly exhibits xenomorphic shape at garnet/garnet grain boundaries, whereas it is idiomorphic at garnet/quartz boundaries. EBSD microstructural analysis of the garnet porphyroblasts reveals that misorientation angles of neighbour‐pair garnet grains within the vein have a random distribution. This contrasts with previous studies that found coalescence of garnet in mica schist leads to an increased frequency of low angle misorientation boundaries by misorientation‐driven rotation. As garnet nucleated with random orientation, the difference in misorientation between the two studies is due to the difference in the extent of grain rotation. A simple kinetic model that assumes grain rotation of garnet is rate‐limited by grain boundary diffusion creep of matrix quartz, shows that (i) the substantial rotation of a fine garnet grain could occur for the conditions of the Sanbagawa metamorphism, but (ii) the rotation rate drastically decreased as garnet grains formed large clusters during growth. Therefore, the random misorientation distribution of garnet porphyroblasts in the Sanbagawa vein is interpreted as follows: (i) garnet within the vein grew so fast that substantial grain rotation did not occur through porphyroblast formation, and thus (ii) random orientations at the nucleation stage were preserved. The extent of misorientation‐driven rotation indicated by deviation from random orientation distribution may be useful to constrain the growth rate of constituent grains of porphyroblast that formed by multiple nucleation and coalescence.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号