首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
地质学   4篇
  2015年   1篇
  2008年   3篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Stone substitution is a conventional operation during heritage buildings’ restoration, but becomes problematic for architects and restorers when the quarry is mined out. The compatibility of the substitution stones with the original ones has been for long mainly based on the aesthetical aspect, this resulting too often in a patchwork of original and substitution stones with different patina after several years because of differences of properties. In this study, the objective is to show how substitution stones can be selected by combining aesthetic criteria and stones properties that are relevant for analyzing their compatibility. A couple of French limestones with their potential substitution stones were selected for the study. Our results showed that potential substitution stones selected on their aesthetic criteria require to be rejected because of their differences of physical properties. On the other hand, our results showed also the possibility to select substitution stones with satisfactory aesthetic aspect and properties that enable to expect a satisfactory compatibility with the original stone.  相似文献   
2.
Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 μ m?3) and yearly (15 μg m?3) mass‐per‐unit‐volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non‐regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size‐limiting cyclone, or with no particle‐size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate‐bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM25 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production and/or mobile sources (Mo, Cd, Pb, Cu, Zn) and (4) a transient marine source (Sr, Mg). Concentrations of Hg in PM2.5 at background levels in the single pg m?3 were shown by collection and analysis of PM2.5 on filters and by an automated speciation analyser set up at the Big Meadows air quality site. The speciation unit revealed periodic elevation of reactive gaseous mercury (RGM) that co‐occurred with peaks in SO2, indicating an anthropogenic source. GC/MS total ion current chromatograms for the two sites were quite similar indicating that organic signatures were regional in extent and/or that the same compounds were present locally at each site. Calculated carbon preference index values for n‐alkanes indicated that plant waxes rather than anthropogenic sources, were the dominant alkane source. Polycyclic aromatic hydrocarbons (PAHs) were detected, with a predominance of non‐alkylated, and higher molecular weight PAHs in this fraction, suggestive of a combustion source (fossil fuel or forest fires).  相似文献   
3.
The mercury content of 116 reference materials (RMs) from ten international organisations was determined in this study, which focused on variability within and between batches of RMs. Direct mercury analysis (DMA) was applied to RMs having Hg contents between 1 and 6300 ng g?1 and provided good precision and accuracy. Accuracy was demonstrated by the agreement of our results with certified values, while replicates were made to establish the precision. Low within‐batch variability was noted, with precision from 0.1 to 23% (n = 3–5) apparently depending on Hg content and homogeneity, whereas systematic offsets were detected among several batches. Thanks to the analysis of different batches; the homogeneity or heterogeneity of several RMs was shown, and thus, suitable RMs for quality control for Hg determinations could be recommended.  相似文献   
4.
Mercury was determined in thirty‐three international stream sediment and soil reference samples (eleven Chinese soils, GSS‐1 to GSS‐11; twelve Chinese stream sediments, GSD‐1A to GSD‐12; four Canadian stream sediments STSD‐1 to STSD‐4; South African stream sediments, SARM‐42, SARM‐46 and SARM‐47; Japanese stream sediments, JSd‐1 to JSd‐3) by direct mercury analyser. Samples were taken in 500 μl quartz boats, placed in an auto sampler and processed (drying time 60 s at 300 °C; decomposition time 120 s at 850 °C; waiting time 45 s). The instrument was calibrated in the low (0‐50 ng) and high ranges (50‐500 ng) with two reference materials GSS‐5 and GXR‐2 (USGS). Using the calibration line, reference samples were analysed for Hg. The results of the determinations agreed with the recommended values of RMs in all cases except JSd‐1. The RSD calculated for the RMs was found to be within 20%. The detection limit was 1 ng g?1.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号