首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   11篇
地球物理   2篇
地质学   43篇
海洋学   1篇
  2016年   6篇
  2015年   5篇
  2014年   3篇
  2013年   12篇
  2012年   2篇
  2011年   7篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1997年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
1.
Trace elements from samples of bauxite deposits can provide useful information relevant to the exploration of the ore‐forming process. Sample digestion is a fundamental and critical stage in the process of geochemical analysis, which enables the acquisition of accurate trace element data by ICP‐MS. However, the conventional bomb digestion method with HF/HNO3 results in a significant loss of rare earth elements (REEs) due to the formation of insoluble AlF3 precipitates during the digestion of bauxite samples. In this study, the digestion capability of the following methods was investigated: (a) ‘Mg‐addition’ bomb digestion, (b) NH4HF2 open vessel digestion and (c) NH4F open vessel digestion. ‘Mg‐addition’ bomb digestion can effectively suppress the formation of AlF3 and simultaneously ensure the complete decomposition of resistant minerals in bauxite samples. The addition of MgO to the bauxite samples resulted in (Mg + Ca)/Al ratios ≥ 1. However, adding a large amount of MgO leads to significant blank contamination for some transition elements (V, Cr, Ni and Zn). The NH4HF2 or NH4F open vessel digestion methods can also completely digest resistant minerals in bauxite samples in a short period of time (5 hr). Unlike conventional bomb digestion with HF/HNO3, the white precipitates and the semi‐transparent gels present in the NH4HF2 and NH4F digestion methods could be efficiently dissolved by evaporation with HClO4. Based on these three optimised digestion methods, thirty‐seven trace elements including REEs in ten bauxite reference materials (RMs) were determined by ICP‐MS. The data obtained showed excellent inter‐method reproducibility (agreement within 5% for REEs). The relative standard deviation (% RSD) for most elements was < 6%. The concentrations of trace elements in the ten bauxite RMs showed agreement with the limited certified (Li, V, Cr, Cu, Zn, Ga, Sr, Zr and Pb) and information values (Co, Ba, Ce and Hf) available. New trace element data for the ten RMs are provided, some of which for the first time.  相似文献   
2.
对黄海辐射沙洲烂沙洋水道区域的3个钻孔共81个沉积物样品进行了微量、常量元素分析和^14C测年分析.化学元素质量分数的变化与当时沉积环境的变化相对应。突发事件(如风暴潮)的发生不但在沉积物的岩性上有所体现,而且在微量元素质量分数的变化上也有很明显的体现。微量元素Zr可作为沉积能量变化的地化指示剂,潮汐通道北部的西太阳沙区域的沉积动力环境在4000a以前是较弱的。潮流通道的上段沉积物是来自水深较浅的区域,由于潮流和波浪的作用使其能够保持稳定的水深。  相似文献   
3.
We report a measurement procedure to determine simultaneously the major cation concentrations (Na, Ca, K and Mg) of seawater‐derived solutions by inductively coupled plasma‐atomic emission spectrometry. The best results were obtained when the IAPSO (‘standard’) seawater reference material was diluted by thirty times with Milli‐Q® water. We obtained an average reference value rK (the ratio of the mass fraction of potassium to that of chlorine, i.e., (g kg?1)/(g kg?1)) for IAPSO seawater of 0.0205 ± 0.0006 (2.9% RSD), not significantly different from 0.0206 ± 0.0005 (2.4% RSD) for seawater composition reported in the literature. The measured Na, Ca and Mg concentrations correspond to rNa, rCa and rMg values of 0.5406 ± 0.0026 (0.5% RSD), 0.02192 ± 0.00048 (2.2% RSD) and 0.06830 ± 0.00047 (0.7% RSD), respectively, in line with previous values measured by wet‐chemistry and atomic absorption spectrophotometry or wet‐chemical titration. Our measurement procedure was used successfully on synthetic seawater solutions and high‐temperature hydrothermal fluids.  相似文献   
4.
Mass fractions of S, Cu, Se, Mo, Ag, Cd, In, Te, Ba, Sm, W and Tl were determined by isotope dilution sector field ICP‐MS in the same sample aliquot of reference materials using HF‐HNO3 digestion in PFA beakers in pressure bombs and glassy carbon vessels in a high‐pressure asher (HPA‐S) for comparison. Additionally, Bi was determined by internal standardisation relative to Tl. Because isobaric and oxide interferences pose problems for many of these elements, efficient chromatographic separation methods in combination with an Aridus desolvator were employed to minimise interference effects. Repeated digestion and measurement of geological reference materials (BHVO‐1, BHVO‐2, SCo‐1, MAG‐1, MRG‐1 and UB‐N) gave results with < 5% relative intermediate precision (1s) for most elements, except Bi. Replicates of NIST SRM 612 glass digested on a hot plate were analysed by the same methods, and the results agree with reference values mostly within 2% relative deviation. Data for the carbonaceous chondrites Allende, Murchison, Orgueil and Ivuna are also reported. Digestion in a HPA‐S was as efficient as in pressure bombs, but some elements displayed higher blank levels following HPA‐S treatment. Pressure bomb digestion yielded precise data for volatile S, Se and Te, but may result in high blanks for W.  相似文献   
5.
A range of independently characterised reference materials (RMs) for LA‐ICP‐MS, used for the determination of the platinum‐group elements (PGE) and Au in a sulfide matrix, were analysed and compared: 8b, PGE‐A, NiS‐3, Po727‐T1, Po724‐T and the Lombard meteorite. The newly developed RM NiS‐3 was used as the RM for the calibration of all LA‐ICP‐MS analyses and the measured concentrations of the other RMs compared against their published concentrations. This data were also used to assess the consistency of concentrations calibrated against the different RMs. It was found that Po727‐T1 and 8b produced results that were comparable, within uncertainty, for all elements. Po727‐T1 also produced consistent results with NiS‐3 for all elements. All other RMs showed differences for some elements, especially Ru in Po724‐T, and Os, Ir and Au in PGE‐A. The homogeneity of the PGE and Au in each RM was assessed, by comparing the precision of multiple LA‐ICP‐MS spot analyses with the average uncertainty of the signal. Po724‐T, Po727‐T1 and the Lombard meteorite were found to be homogeneous for all elements, but 8b, PGE‐A and NiS‐3 were heterogeneous for some elements. This is the first direct comparison between a range of independently characterised PGE and Au LA‐ICP‐MS RMs.  相似文献   
6.
A procedure for determining a wide range of chalcophile and siderophile elements in typical crustal rocks using standard addition and ICP‐SFMS (inductively coupled plasma sector field mass spectrometry) is presented. New results for Ga, Ge, Mo, Ag, Cd, In, Sn, Sb, W, Tl and Bi abundances in USGS whole‐rock reference materials AGV‐2, BHVO‐1, BIR‐1, G‐2, GSP‐1 and W‐2 are reported using this analytical procedure. Intermediate precision of means based on multiple dissolved aliquots of each USGS reference material was 10% RSD or better for Ga, Ge, In and Sn in all, and similarly good for Ag, Cd, Sb, Tl and Bi in most reference materials. Poorer intermediate precision of Mo and W measurements in several reference materials is probably due to higher analytical blanks on these elements and powder heterogeneity due to a sulfide‐related nugget effect in the specific case of Mo in GSP‐1. Results for all elements fell within the range of available published data with the exception of Ag, which yielded systematically higher concentrations than found in the literature for five of the six reference materials, likely reflecting interference from unresolved polyatomic species.  相似文献   
7.
The natural river water certified reference material SLRS‐5 (NRC‐CNRC) was routinely analysed in this study for major and trace elements by ten French laboratories. Most of the measurements were made using ICP‐MS. Because no certified values are assigned by NRC‐CNRC for silicon and 35 trace element concentrations (rare earth elements, Ag, B, Bi, Cs, Ga, Ge, Li, Nb, P, Rb, Rh, Re, S, Sc, Sn, Th, Ti, Tl, W, Y and Zr), or for isotopic ratios, we provide a compilation of the concentrations and related uncertainties obtained by the participating laboratories. Strontium isotopic ratios are also given.  相似文献   
8.
This study presents an experimental procedure to fabricate high‐purity silica glass containing a selected element at a specified mass fraction. The procedure was used to prepare glasses doped with trace‐level mass fractions of Ti with the goal of improving analytical confidence when measuring trace elements in quartz. Systematic tests were performed to determine the ideal conditions and procedures for doping nanoporous silica gel with the highest efficiency of dopant recovery. Silica gel was cleaned in concentrated HCl, immersed in a non‐polar doping medium at a controlled pH and doped with precise quantities of ICP‐MS standard solution. Using liquids composed of longer chain molecules as the doping medium diminishes recovery, suggesting that large molecules could obstruct nanopores to inhibit capillary uptake of the dopant. A control experiment using crystalline quartz reinforced the effectiveness of nanoporous silica gel for doping with trace‐level precision. Layered aggregates of silica gel doped with different Ti mass fractions were hot‐pressed to create multi‐layered reference materials that were analysed with multiple techniques at a variety of spatial scales. Analyses at the intra‐grain scale (cathodoluminescence scanning electron microscopy, electron probe microanalysis), at the single grain scale (SIMS), at the sample layer scale (EPMA, laser ablation‐ICP‐MS) and at the bulk scale (ICP‐OES) demonstrated acceptable homogeneity at sample volumes characteristic of most microanalysis techniques and show that nanoporous silica gel holds promise as a highly retentive doping substrate for preparing reference materials for laser‐, electron‐ and ion‐beam microanalysis.  相似文献   
9.
Two Co‐rich seamount crust reference materials, MCPt‐1 and MCPt‐2, were prepared using ultra‐fine particle size milling technique and characterised for the platinum‐group elements (PGEs). The raw material for these two reference materials was collected separately from the Magellan seamounts of the western Pacific Ocean and the seamounts of the central Pacific Ocean by Russian and Chinese scientists. First, they were ground by ball mill to a ?200 mesh powder, then further processed by ultra‐fine jet mill and well‐mixed. The particle size distributions of the samples were tested by a laser particle analyser; the average particle size was 1.8 and 1.5 μm (equal to about 2000 mesh) respectively. The homogeneity of six major and minor elements in these two materials was tested at the milligram level of sampling mass by high‐precision wavelength dispersive X‐ray fluorescence (XRF) spectrometry and at the microgram level of sampling mass by electron probe microanalyser. The homogeneity of more than forty trace elements, including Pt, was tested at the microgram level of sampling mass by LA‐ICP‐MS. Except for Rh, all PGEs were determined by isotope dilution‐ICP‐MS. Platinum in MCPt‐1 and MCPt‐2 was characterised as certified values, whereas the other five PGEs in MCPt‐1 and MCPt‐2 were reported as reference values. In addition, the information values of sixty‐two major, minor and trace elements were obtained by XRF, ICP‐AES and ICP‐MS. The minimum sampling mass for the determination of PGEs was 1 g, while the minimum sampling mass for the determination of the other elements was 2–5 mg.  相似文献   
10.
Mg/Ca and Sr/Ca ratios in calcium carbonate are important components of many palaeoclimate studies. We present an isotope dilution method relying on a single mixed spike containing 25Mg, 43Ca and 87Sr. Dozens of samples per day, as small as 10 μg of carbonate, could be dissolved, spiked and run in an ICP‐MS with a precision of 0.8% (2 RSD). Two instruments types, a sector field and a quadrupole ICP‐MS, were compared. The best long term precision found was 0.4% (2 RSD), although this increased by up to a factor of two when samples of very different Mg or Sr content were run together in the same sequence. Long term averages for the two instruments concurred. No matrix effects were detected for a range of Ca concentrations between 0.2 and 2 mmol l‐1. Accuracy, tested by measuring synthetic standard solutions, was 0.8% with some systematic trends. We demonstrate the strength of this isotope dilution method for (a) obtaining accurate results for sample sets that present a broad Mg and Sr range and (b) testing solid carbonates as candidate reference materials for interlaboratory consistency. Mg/Ca and Sr/Ca results for reference materials were in good agreement with values from the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号