首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
测绘学   1篇
地球物理   7篇
地质学   4篇
  2016年   1篇
  2014年   2篇
  2012年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1998年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Coseismic landsliding presents a major hazard to infrastructure in mountains during large earthquakes. This is particularly true for road networks, as historically coseismic landsliding has resulted in road losses larger than those due to ground shaking. Assessing the exposure of current and planned highway links to coseismic landsliding for future earthquake scenarios is therefore vital for disaster risk reduction. This study presents a method to evaluate the exposure of critical infrastructure to landsliding from scenario earthquakes from an underlying quantitative landslide hazard assessment. The method is applied to a proposed new highway link in South Island, New Zealand, for a scenario Alpine Fault earthquake and compared to the current network. Exposure (the likelihood of a network being affected by one or more landslides) is evaluated from a regional-scale coseismic landslide hazard model and assessed on a relative basis from 0 to 1. The results show that the proposed Haast-Hollyford Highway (HHH) would be highly exposed to coseismic landsliding with at least 30–40?km likely to be badly affected (the Simonin Pass route being the worse affected of the two routes). In the current South Island State Highway network, the HHH would be the link most exposed to landsliding and would increase the total network exposure by 50–70% despite increasing the total road length by just 3%. The present work is intended to provide an effective method to assess coseismic landslide hazard of infrastructure in mountains with seismic hazard, and potentially identify mitigation options and critical network segments.  相似文献   
2.
We present a framework for the seismic risk assessment of water supply networks, operating in either normal or abnormal conditions. We propose a methodology for assessing the reliability of water pipe networks combining data of past non‐seismic damage and the vulnerability of the network components against seismic loading. Historical data are obtained using records of damages that occur on a daily basis throughout the network and are processed to produce‘survival curves’, depicting their estimated survival rate over time. The fragility of the network components is assessed using the approach suggested in the American Lifelines Alliance guidelines. The network reliability is assessed using graph theory, whereas the system network reliability is calculated using Monte Carlo simulation. The methodology proposed is demonstrated both on a simple, small‐scale, network and also on a real‐scale district metered area from the water network of the city of Limassol, Cyprus. The proposed approach allows the estimation of the probability that the network fails to provide the desired level of service and allows the prioritization of retrofit interventions and of capacity‐upgrade actions pertaining to existing water pipe networks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
3.
青新交界8.1级地震生命线工程震害   总被引:10,自引:5,他引:10  
介绍了青新交界8.1级地震中青藏公路沿线各类生命线工程的震害,初步分析了产生震害的原因。  相似文献   
4.
A model for the regional hospitals system behaviour in case of a seismic event is developed. The aim is the evaluation of the vulnerability of the system as well as the selection of the best intervention strategy for the retrofitting of the hospitals so as to minimize the cost benefit ratio and to evaluate the effect of different post-earthquake emergency measures like the use of camp hospitals. The efficiency of the system is measured in terms of the mean distance to be cured for persons injured by the earthquake and by damages to the system. Some simplifying assumptions are used and discussed; these can be easily removed if necessary. Results allow to clearly indicate the most convenient interventions. © 1998 John Wiley & Sons, Ltd.  相似文献   
5.
Many epidemiological studies involve analysis of clusters of diseases to infer locations of environmental hazards that could be responsible for the disease. This approach is however only suitable for sedentary populations or diseases with small latency periods. For migratory populations and diseases with long latency periods, people may change their residential location between time of exposure and onset of ill health. For such situations, clusters are diffused and diluted by in- and out-migration and may become very difficult to detect. One way to address the problem of diffused clusters is to include in analyses not only current residential locations, but all past locations at which cases might have been exposed to environmental hazardous. In this paper, we assume that a persons residential history provides such information and represent it through a discrete geospatial lifeline data model. Clusters of similar geospatial lifelines represent individuals who have similar residential histories—and therefore represent people who are more likely to have had similar environmental exposure histories. We therefore introduce a lifeline distance (dissimilarity) measure to detect clusters of cases, providing a basis for revealing possible regions in space-time where environmental hazards might have existed in the past. The ability of the measure to distinguish cases from controls is tested using two sets of synthetically generated cases and controls. Results indicate that the measure is able to consistently distinguish between populations of cases and controls with statistically significant results. The lifeline distance measure consistently outperforms another measure which uses only the distance between subjects residences at time of diagnosis. However, the advantages of using the entire residential history are only partly realized, since the ability to distinguish between cases and controls is only moderately better for the lifeline distance function. Future work is needed to investigate modifications to the inter-lifeline distance measure in order to enhance the potential of this approach to detect locations of environmental hazards over the lifespan.This project is supported by grant number 1 R01 ES09816-01 from the National Institute of Environmental Health Sciences, NIH. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS or NIH. We wish to thank Peter Rogerson for helpful discussions of the migration models, and the anonymous reviewers for pointing out areas where the paper could be improved.  相似文献   
6.
Two key issues distinguish probabilistic seismic risk analysis of a lifeline or portfolio of structures from that of a single structure. Regional analysis must consider the correlation among lifeline components or structures in the portfolio, and the larger scope makes it much more computationally demanding. In this paper, we systematically identify and compare alternative methods for regional hazard analysis that can be used as the first part of a computationally efficient regional probabilistic seismic risk analysis that properly considers spatial correlation. Specifically, each method results in a set of probabilistic ground motion maps with associated hazard‐consistent annual occurrence probabilities that together represent the regional hazard. The methods are compared according to how replicable and computationally tractable they are and the extent to which the resulting maps are physically realistic, consistent with the regional hazard and regional spatial correlation, and few in number. On the basis of a conceptual comparison and an empirical comparison for Los Angeles, we recommend a combination of simulation and optimization approaches: (i) Monte Carlo simulation with importance sampling of the earthquake magnitudes to generate a set of probabilistic earthquake scenarios (defined by source and magnitude); (ii) the optimization‐based probabilistic scenario method, a mixed‐integer linear program, to reduce the size of that set; (iii) Monte Carlo simulation to generate a set of probabilistic ground motion maps, varying the number of maps sampled from each earthquake scenario so as to minimize the sampling variance; and (iv) the optimization‐based probabilistic scenario again to reduce the set of probabilistic ground motion maps. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
7.
A resilience index is used to quantify preventive measures, emergency measures, and restoration measures of complex systems, such as physical infrastructures, when they are subjected to natural disasters like earthquakes, hurricanes, floods, etc. Interdependencies among these systems can generate cascading failures or amplification effects, which can also affect the restoration measures right after an extreme event and generate a reduction of the resilience index. In this article, a method is proposed to evaluate the physical infrastructure resilience of a region affected by a disaster considering infrastructure interdependency. It is illustrated using available restoration curves from the March 11 2011 Tohoku Earthquake in Japan. The weights assigned to each infrastructure, which are used to determine resilience, are evaluated using the degree of interdependency indices which are obtain by time series analysis. Results show that the weight coefficients thus obtained do not influence the resilience index significantly; however, the methodology proposed is unbiased from subjective judgment and is able to identify the critical lifelines. Furthermore, the results of the case study presented here suggest that to obtain meaningful estimation of the weight coefficients, it is necessary to consider the period range between two perturbations (e.g., main shock and aftershock). Future infrastructure disruption data (from this and other earthquakes) would be needed to generalize this finding that will allow also to quantify the changes in the restoration curves caused by the magnitude and distance of the shocks from the epicenter, as well as the intrinsic properties of the physical infrastructures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
8.
The Bam Earthquake of 26 December 2003   总被引:3,自引:0,他引:3  
The devastating earthquake of 26 December 2003 claimed more than 26,000 lives in the city of Bam and surrounding towns and villages in Southeast Iran, and left the majority of the Bam population homeless. The reason for this tragedy was an unfortunate combination of geological, social and human circumstances. The causative fault practically traversed the city of Bam and the earthquake occurred at a shallow depth. The residential buildings were completely inappropriate for a seismic region, being extremely vulnerable to earthquake shaking, and the earthquake occurred early in the morning when most people were still sleeping. The damage pattern was nearly symmetric about a line 3 km to the west of the surface expression of the Bam fault, and the damage attenuated rapidly with distance from this line. The industrial facilities and the lifelines performed relatively well and experienced slight to moderate damage, but this might have been due to their distance from the earthquake epicentre. However, many of the qanat (traditional subterranean irrigation channels) chains that served the twin cities of Bam and Baravat collapsed. Emergency facilities (hospitals, police and fire stations), schools and the university were destroyed and/or heavily damaged during the earthquake. The geotechnical effects of the earthquake were not significant. There was little evidence that site response effects played a major role in the damage pattern in the city. There were no reports of liquefaction and only minor sliding activity took place during the event. A unique set of strong motion acceleration recordings were obtained at the Bam accelerograph station. The highest peak ground acceleration (nearly 1g) was recorded for the vertical component of the motion. However, the longitudinal component (fault-parallel motion in N–S direction) clearly had the largest energy flux, as well as the largest maximum velocity and displacement.  相似文献   
9.
This article describes a generalframework for hazard mitigation-oriented planning assessments of mobile telecommunications lifelines. Geographic information systems (GIS) provide an integrated platform on which to operationalize this framework. Our view is that the creation and adoption of a mitigation-oriented assessment framework could provide the basis for better decision-making on the part of public officials and telecommunications carriers alike by providing a standard reference point for consultation and consensus-building. A standard point of consultation is a crucial first step toward a program of long-term risk reduction for emergency communications, contributing to more resilient communities across Canada.  相似文献   
10.
Reliability of Lifeline Networks with Multiple Sources under Seismic Hazard   总被引:2,自引:0,他引:2  
Lifelines are networks extending spatiallyover large areas. Transportation systems, pipelines,communication and power transmission systems areexamples of lifelines. The performance of a lifelineafter a major earthquake is particularly vital for acommunity because of the emergency services that areusually required after such events. Performancemeasures are usually expressed in terms of quantitiesthat are assessed based on statistical andprobabilistic methodologies. The major performancemeasure is the probability of reaching from aspecified point to another one successfully after acatastrophic event, such as an earthquake. Evaluationof this performance measure requires a seismic hazardmethodology, capacity determination techniques andnetwork reliability assessment methods. By combiningthese three aspects in one model, it is possible tocalculate the reliability of any lifeline system underseismic danger. The aim of this paper is to present aprobabilistic model for the evaluation of the seismicreliability of lifeline networks having multiplesources. The seismic reliability of a waterdistribution system located in Bursa, Turkey isassessed in order to show the implementation of theproposed model. The numerical calculations are carriedout by the LIFEPACK software, which is developed forthis purpose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号