首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4471篇
  免费   1183篇
  国内免费   1420篇
测绘学   152篇
大气科学   1860篇
地球物理   984篇
地质学   2039篇
海洋学   1078篇
天文学   69篇
综合类   288篇
自然地理   604篇
  2024年   32篇
  2023年   56篇
  2022年   164篇
  2021年   198篇
  2020年   190篇
  2019年   243篇
  2018年   188篇
  2017年   201篇
  2016年   197篇
  2015年   255篇
  2014年   304篇
  2013年   287篇
  2012年   254篇
  2011年   265篇
  2010年   235篇
  2009年   326篇
  2008年   331篇
  2007年   394篇
  2006年   302篇
  2005年   335篇
  2004年   263篇
  2003年   245篇
  2002年   255篇
  2001年   191篇
  2000年   183篇
  1999年   169篇
  1998年   170篇
  1997年   142篇
  1996年   130篇
  1995年   81篇
  1994年   100篇
  1993年   66篇
  1992年   82篇
  1991年   72篇
  1990年   48篇
  1989年   28篇
  1988年   42篇
  1987年   17篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   5篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1971年   1篇
排序方式: 共有7074条查询结果,搜索用时 31 毫秒
1.
Sediment successions in coastal cliffs around Mezen Bay, southeastern White Sea, record an unusually detailed history of former glaciations, interstadial marine and fluvial events from the Weichselian. A regional glaciation model for the Weichselian is based on new data from the Mezen Bay area and previously published data from adjacent areas. Following the Mikulinian (Eemian) interglacial a shelf‐centred glaciation in the Kara Sea is reflected in proglacial conditions at 100–90 ka. A local ice‐cap over the Timan ridge existed between 75 and 65 ka. Renewed glaciation in the Kara Sea spread southwestwards around 60 ka only, interrupted by a marine inundation, before it advanced to its maximum position at about 55–50 ka. After a prolonged ice‐free period, the Scandinavian ice‐sheet invaded the area from the west and terminated east of Mezen Bay about 17 ka. The previously published evidence of a large ice‐dammed lake in the central Arkhangelsk region, Lake Komi, finds no support in this study. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
Sediment proxy records from a continuous, 1.5 million year long deep‐sea sediment core from a site in the western Norwegian Sea were used to obtain new insights into the nature of palaeoceanographic change in the northern North Atlantic (Nordic seas) during the climatic shift of the Mid‐Pleistocene Revolution (MPR). Red‐green sediment colour and magnetic susceptibility records both reveal significant differences in their mean values when comparing the intervals older than 700 000 yr (700 ka) with those from the past 500 kyr. The timing and duration of these changes indicates that the MPR in the Nordic seas is characterised by a gradual transition lasting about 200 kyr. Together with further sedimentological evidence this suggests that the mid‐Pleistocene climate shift was accompanied by a general change in ice‐drift pattern. It is further proposed that prior to the onset of the major late Pleistocene glaciations in the Northern Hemisphere a significant proportion of the ice in the eastern Nordic seas originated from a southern provenance, whereas later it dominantly came from the surrounding landmasses. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
3.
A coupling procedure between a climate model of intermediate complexity (CLIMBER-2.3) and a 3-dimensional thermo-mechanical ice-sheet model (GREMLINS) has been elaborated. The resulting coupled model describes the evolution of atmosphere, ocean, biosphere, cryosphere and their mutual interactions. It is used to perform several simulations of the Last Deglaciation period to identify the physical mechanisms at the origin of the deglaciation process. Our baseline experiment, forced by insolation and atmospheric CO2, produces almost complete deglaciation of past northern hemisphere continental ice sheets, although ice remains over the Cordilleran region at the end of the simulation and also in Alaska and Eastern Siberia. Results clearly demonstrate that, in this study, the melting of the North American ice sheet is critically dependent on the deglaciation of Fennoscandia through processes involving switches of the thermohaline circulation from a glacial mode to a modern one and associated warming of the northern hemisphere. A set of sensitivity experiments has been carried out to test the relative importance of both forcing factors and internal processes in the deglaciation mechanism. It appears that the deglaciation is primarily driven by insolation. However, the atmospheric CO2 modulates the timing of the melting of the Fennoscandian ice sheet, and results relative to Laurentide illustrate the existence of threshold CO2 values, that can be translated in terms of critical temperature, below which the deglaciation is impeded. Finally, we show that the beginning of the deglaciation process of the Laurentide ice sheet may be influenced by the time at which the shift of the thermohaline circulation from one mode to the other occurs.  相似文献   
4.
Based on the Intensive Field Campaign(IFC-1)data of Boreal Ecosystem-Atmosphere Study(BOREAS).a three-dimensional meso-β scale model is used to simulate the effect of boreal forests onthe lower atmosphere.A fine horizontal resolution of 2 km×2 km is used in order to distinguish thevegetative heterogeneity in the boreal region.A total of 20×25 grid points cover the entire sub-modeling area in BOREAS' South Study Area(SSA).The ecosystem types and their coverage ineach grid square are extracted from the North American Land Cover Characteristics Data Base(NALCCD)generated by the U.S.Geographical Survey(USGS)and the University of Nebraska-Lincoln(UNL).The topography of the study area is taken from the Digital Elevation Map(DEM)of USGS.The model outputs include the components of the energy balance budget within the canopyand at the ground.the turbulence parameters in the atmospheric boundary layer and the wind.temperature and humidity profiles extending up to a height of 1500 m.In addition to the fine timeand spatial step,the unique feature of the present model is the incorporation of both dynamic andbiological effects of the Boreal forest into the model parameterization scheme.The model resultscompare favorably with BOREAS' IFC-1 data in 1994 when the forest was in the luxuriant growingperiod.  相似文献   
5.
流褶层与韧变带是地壳拉伸变形,顺层固态流变作用下的产物。流褶层是以原始层理为变形面或再经递进变形的褶皱变形岩层或岩石共生组合层位。韧变带具明显的层控性,受岩石成分和应变程度控制,不同环境和不同成分岩石的韧变带具有相异的组合型式和变形机制,井具有一定的递变规律。流褶层和韧变带可分属不同层位,但流褶层可实现向韧变带的转化。  相似文献   
6.
Geophysical data from Gerlache Strait, Croker Passage, Bismarck Strait and the adjacent continental shelf reveal streamlined subglacial bedforms that were produced at the bed of the Antarctic Peninsula Ice Sheet (APIS) during the last glaciation. The spatial arrangement and orientation of these bedforms record the former drainage pattern and flow dynamics of an APIS outlet up‐flow, and feeding into, a palaeo‐ice stream in the Western Bransfield Basin. Evidence suggests that together, they represent a single ice‐flow system that drained the APIS during the last glaciation. The ice‐sheet outlet flowed north/northeastwards through Gerlache Strait and Croker Passage and converged with a second, more easterly ice‐flow tributary on the middle shelf to form the main palaeo‐ice stream. The dominance of drumlins with low elongation ratios suggests that ice‐sheet outlet draining through Gerlache Strait was comparatively slower than the main palaeo‐ice stream in the Western Bransfield Basin, although the low elongation ratios may also partly reflect the lack of sediment. Progressive elongation of drumlins further down‐flow indicates that the ice sheet accelerated through Croker Passage and the western tributary trough, and fed into the main zone of streaming flow in the Western Bransfield Basin. Topography would have exerted a strong control on the development of the palaeo‐ice stream system but subglacial geology may also have been significant given the transition from crystalline bedrock to sedimentary strata on the inner–mid‐shelf. In the broader context, the APIS was drained by a number of major fast‐flowing outlets through cross‐shelf troughs to the outer continental shelf during the last glaciation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
7.
本文根据扫描电镜对从漓江河谷钻孔中的泥砾层取得的481粒石英砂表面形态特证研究结果:石英砂多数颗粒保持棱角状外形并遭受不同程度的磨蚀,具阶状贝壳断口,平直或弧形刮削面和多向擦痕,沿解理面破碎呈“V”字形沟和撞击碟形坑,以及微溶蚀孔、隙、蜂窝状溶孔群和SiO_2再沉积等表面形态结构特征。认为它是在第四纪古地理湿热气候条件下泥石流沉积的产物,物源可能来自境内或周边的泥盆系砂岩和境外的花岗岩。  相似文献   
8.
A palaeotemperature reconstruction based on periglacial phenomena in Europe north of approximately 51 °N, is compared with high‐resolution regional climate model simulations of the marine oxygen isotope Stage 3 (Stage 3) palaeoclimate. The experiments represent Stage 3 warm (interstadial), Stage 3 cold (stadial) and Last Glacial Maximum climatic conditions. The palaeotemperature reconstruction deviates considerably for the Stage 3 cold climate experiments, with mismatches up to 11 °C for the mean annual air temperature and up to 15 °C for the winter temperature. However, in this reconstruction various factors linking climate and permafrost have not been taken into account. In particular a relatively thin snow cover and high climatic variability of the glacial climate could have influenced temperature limits for ice‐wedge growth. Based on modelling the 0 °C mean annual ground temperature proves to be an appropriate upper temperature limit. Using this limit, mismatches with the Stage 3 cold climate experiments have been reduced but still remain. We therefore assume that the Stage 3 ice wedges were generated during short (decadal time‐scale) intervals of extreme cold climate, below the mean temperatures indicated by the Stage 3 cold climate model simulations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
9.
The magnitude and spatial distribution of snow on sea ice are both integral components of the ocean–sea‐ice–atmosphere system. Although there exists a number of algorithms to estimate the snow water equivalent (SWE) on terrestrial surfaces, to date there is no precise method to estimate SWE on sea ice. Physical snow properties and in situ microwave radiometry at 19, 37 and 85 GHz, V and H polarization were collected for a 10‐day period over 20 first‐year sea ice sites. We present and compare the in situ physical, electrical and microwave emission properties of snow over smooth Arctic first‐year sea ice for 19 of the 20 sites sampled. Physical processes creating the observed vertical patterns in the physical and electrical properties are discussed. An algorithm is then developed from the relationship between the SWE and the brightness temperature measured at 37 GHz (55°) H polarization and the air temperature. The multiple regression between these variables is able to account for over 90% of the variability in the measured SWE. This algorithm is validated with a small in situ data set collected during the 1999 field experiment. We then compare our data against the NASA snow thickness algorithm, designed as part of the NASA Earth Enterprise Program. The results indicated a lack of agreement between the NASA algorithm and the algorithm developed here. This lack of agreement is attributed to differences in scale between the Special Sensor Microwave/Imager and surface radiometers and to differences in the Antarctic versus Arctic snow physical and electrical properties. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
10.
A one‐dimensional thermodynamic model for simulating lake‐ice phenology is presented and evaluated. The model can be driven with observed daily or hourly atmospheric forcing of air temperature, relative humidity, wind speed, cloud amount and snowfall. In addition to computing the energy balance components, key model output includes the temperature profile at an arbitrary number of levels within the ice/snow (or the water temperature if there is no ice) and ice thickness (clear ice and snow‐ice) on a daily basis, as well as freeze‐up and break‐up dates. The lake‐ice model is used to simulate ice‐growth processes on shallow lakes in arctic, sub‐arctic, and high‐boreal forest environments. Model output is compared with field and remote sensing observations gathered over several ice seasons. Simulated ice thickness, including snow‐ice formation, compares favourably with field measurements. Ice‐on and ice‐off dates are also well simulated when compared with field and satellite observations, with a mean absolute difference of 2 days. Model simulations and observations illustrate the key role that snow cover plays on the seasonal evolution of ice thickness and the timing of spring break‐up. It is also shown that lake morphometry, depth in particular, is a determinant of ice‐off dates for shallow lakes at high latitudes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号