首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1190篇
  免费   253篇
  国内免费   454篇
测绘学   67篇
大气科学   68篇
地球物理   421篇
地质学   1077篇
海洋学   114篇
天文学   7篇
综合类   64篇
自然地理   79篇
  2024年   14篇
  2023年   26篇
  2022年   61篇
  2021年   47篇
  2020年   56篇
  2019年   73篇
  2018年   70篇
  2017年   58篇
  2016年   65篇
  2015年   66篇
  2014年   80篇
  2013年   74篇
  2012年   86篇
  2011年   68篇
  2010年   53篇
  2009年   88篇
  2008年   110篇
  2007年   104篇
  2006年   75篇
  2005年   84篇
  2004年   83篇
  2003年   58篇
  2002年   47篇
  2001年   40篇
  2000年   25篇
  1999年   40篇
  1998年   36篇
  1997年   36篇
  1996年   31篇
  1995年   17篇
  1994年   30篇
  1993年   13篇
  1992年   14篇
  1991年   14篇
  1990年   16篇
  1989年   11篇
  1988年   9篇
  1987年   14篇
  1986年   4篇
  1978年   1篇
排序方式: 共有1897条查询结果,搜索用时 15 毫秒
1.
西秦岭温泉花岗岩体岩石学特征及岩浆混合标志   总被引:14,自引:5,他引:9  
温泉花岗岩体由酸性端元的寄主岩石和暗色微细粒镁铁质包体群及基性岩墙群组成。无岩浆混合作用或岩浆混合作用较弱区段,寄主岩石以似斑状二长花岗岩为主.显示正常的花岗岩结构构造岩浆混合作用强烈区段。岩石的异常结构构造十分发育.矿物之间自形程度差异显著.常见包晶反应、包含结构、交代边、熔蚀边、交代蚕食的港湾状结构构造及交代缝合线、矿物镶边、斜长石异常环带和矿物残留等,多见指示岩浆混合的标志性矿物针状磷灰石。暗色微粒包体中多见寄主二长花岗岩中的捕掳晶。包体的形态、结构构造以及与寄主岩石强烈地成分交换等均是岩浆混合作用的标志。  相似文献   
2.
有限元法与伪谱法混合求解弹性波动方程   总被引:6,自引:0,他引:6  
在地震波场数值模拟中,有限差分法、有限元法和伪谱法都是常用的基本方法,但它们各有不同的适应性和优缺点,如有限差分法、有限元法都存在减弱网格频散和提高计算效率的矛盾,而伪谱法的网格频散小且计算效率高.有限差分法和伪谱法在处理地表结构复杂或地表剧烈起伏以及地下结构复杂的情况时存在较大的难度,而有限元法可较为理想地拟合起伏地表和任意弯曲界面,且可方便地处理自由边界条件和界面边界条件.尝试将有限元法和伪谱法相结合,形成地震波场数值模拟的一种混合方法,利用二者的优点,克服二者的缺点,达到既减弱网格频散又提高计算精度和效率的目的.并采用所谓的‘过度区域‘技术解决两种不同算法的衔接问题.模拟实例表明,给出的混合模拟方法不失为弹性波场数值模拟的一种有效方法.  相似文献   
3.
We report analyses of noble gases and Nd–Sr isotopes in mineral separates and whole rocks of late Pleistocene (< 0.2 Ma) monzonites from Ulleungdo, South Korea, a volcanic island within the back arc basin of the Japan island arc. A Rb–Sr mineral isochron age for the monzonites is 0.12 ± 0.01 Ma. K–Ar biotite ages from the same samples gave relatively concordant ages of 0.19 ± 0.01and 0.22 ± 0.01 Ma. 40Ar/39Ar yields a similar age of 0.29 ± 0.09 Ma. Geochemical characteristics of the felsic plutonic rocks, which are silica oversaturated alkali felsic rocks (av., 12.5 wt% in K2O + Na2O), are similar to those of 30 alkali volcanics from Ulleungdo in terms of concentrations of major, trace and REE elements. The initial Nd–Sr isotopic ratios of the monzonites (87Sr/86Sr = 0.70454–0.71264, 143Nd/144Nd = 0.512528–0.512577) are comparable with those of the alkali volcanics (87Sr/86Sr = 0.70466–0.70892, 143Nd/144Nd = 0.512521–0.512615) erupted in Stage 3 of Ulleungdo volcanism (0.24–0.47 Ma). The high initial 87Sr/86Sr values of the monzonites imply that seawater and crustally contaminated pre-existing trachytes may have been melted or assimilated during differentiation of the alkali basaltic magma.A mantle helium component (3He/4He ratio of up to 6.5 RA) associated with excess argon was found in the monzonites. Feldspar and biotite have preferentially lost helium during slow cooling at depth and/or during their transportation to the surface in a hot host magma. The source magma noble gas isotopic features are well preserved in fluid inclusions in hornblende, and indicate that the magma may be directly derived from subcontinental lithospheric mantle metasomatized by an ancient subduction process, or may have formed as a mixture of MORB-like mantle and crustal components. The radiometric ages, geochemical and Nd–Sr isotopic signatures of the Ulleungdo monzonites as well as the presence of mantle-derived helium and argon, suggests that these felsic plutonic rocks evolved from alkali basaltic magma that formed by partial melting of subcontinental lithospheric mantle beneath the back arc basin located along the active continental margin of the southeastern part of the Eurasian plate.  相似文献   
4.
Plagioclase ultraphyric basalts (PUBs) with up to 54% plagioclasephenocrysts were dredged in the rift valley and adjacent flanksof the ultraslow-spreading Mohns and Knipovich ridges. The PUBsshow large variations in crystal morphologies and zoning. Thelarge variations suggest that single basalt samples containa mixture of plagioclase crystals that aggregated at differentlevels in the magma conduits. Resorbed crystals and repeatedreverse zones suggest that the magma reservoirs were replenishedand heated several times. Thin concentric zones with melt inclusions,and sharp reductions in the anorthite content of 3–7%,are common between the reverse zones. These zones, and skeletalcrystals with distinctly lower anorthite contents than massivecrystals, are interpreted to be the result of rapid crystalliztionduring strong undercooling. The changes between short periodsof cooling and longer periods with reheating are explained bymultiple advances of crystal-rich magma into cool regions followedby longer periods of gradual magma inflow and temperature increase.The porphyritic basalts are characterizd by more depleted andmore fractionated compositions than the aphyric basalts, withlower (La/Sm)N, K2O and Mg-numbers. This relationship, and theobservation that PUBs are sampled only close to segment centresalong these ridges, suggests that the PUBs formed by higherdegrees of melting and evolved in more long-lived magma reservoirs.We propose that the zoning patterns of plagioclase crystalsand crystal morphologies of these PUBs reflect the developmentand flow of magma through a stacked sill complex-like conduitsystem, whereas the aphyric equivalents represent later flowof magma through the conduit. The formation of voluminous higher-degreemelts may trigger the development of the magma conduits andexplain the generally depleted compositions of PUB magmas. KEY WORDS: basalt; mineral chemistry; MORB; magma mixing; magma chamber; major element  相似文献   
5.
Pressures of Crystallization of Icelandic Magmas   总被引:1,自引:0,他引:1  
Iceland lies astride the Mid-Atlantic Ridge and was createdby seafloor spreading that began about 55 Ma. The crust is anomalouslythick (20–40 km), indicating higher melt productivityin the underlying mantle compared with normal ridge segmentsas a result of the presence of a mantle plume or upwelling centeredbeneath the northwestern edge of the Vatnajökull ice sheet.Seismic and volcanic activity is concentrated in 50 km wideneovolcanic or rift zones, which mark the subaerial Mid-AtlanticRidge, and in three flank zones. Geodetic and geophysical studiesprovide evidence for magma chambers located over a range ofdepths (1·5–21 km) in the crust, with shallow magmachambers beneath some volcanic centers (Katla, Grimsvötn,Eyjafjallajökull), and both shallow and deep chambers beneathothers (e.g. Krafla and Askja). We have compiled analyses ofbasalt glass with geochemical characteristics indicating crystallizationof ol–plag–cpx from 28 volcanic centers in the Western,Northern and Eastern rift zones as well as from the SouthernFlank Zone. Pressures of crystallization were calculated forthese glasses, and confirm that Icelandic magmas crystallizeover a wide range of pressures (0·001 to 1 GPa), equivalentto depths of 0–35 km. This range partly reflects crystallizationof melts en route to the surface, probably in dikes and conduits,after they leave intracrustal chambers. We find no evidencefor a shallow chamber beneath Katla, which probably indicatesthat the shallow chamber identified in other studies containssilica-rich magma rather than basalt. There is reasonably goodcorrelation between the depths of deep chambers (> 17 km)and geophysical estimates of Moho depth, indicating that magmaponds at the crust–mantle boundary. Shallow chambers (<7·1 km) are located in the upper crust, and probablyform at a level of neutral buoyancy. There are also discretechambers at intermediate depths (11 km beneath the rift zones),and there is strong evidence for cooling and crystallizing magmabodies or pockets throughout the middle and lower crust thatmight resemble a crystal mush. The results suggest that themiddle and lower crust is relatively hot and porous. It is suggestedthat crustal accretion occurs over a range of depths similarto those in recent models for accretionary processes at mid-oceanridges. The presence of multiple stacked chambers and hot, porouscrust suggests that magma evolution is complex and involvespolybaric crystallization, magma mixing, and assimilation. KEY WORDS: Iceland rift zones; cotectic crystallization; pressure; depth; magma chamber; volcanic glass  相似文献   
6.
Beard  James S. 《Journal of Petrology》2008,49(5):1027-1041
If a magma is a hybrid of two (or more) isotopically distinctend-members, at least one of which is partially crystalline,separation of melt and crystals after hybridization will leadto the development of isotopic heterogeneities in the magmaas long as some of the pre-existing crystalline material (antecrysts)retains any of its original isotopic composition. This holdstrue whether the hybridization event is magma mixing as traditionallyconstrued, bulk assimilation, or melt assimilation. Once a magma-scaleisotopic heterogeneity is formed by crystal–melt separation,it is essentially permanent, persisting regardless of subsequentcrystallization, mixing, or equilibration events. The magnitudeof the isotopic variability resulting from crystal–meltseparation can be as large as that resulting from differentialcontamination, multiple isotopically distinct sources, or insitu isotopic evolution. In one model, a redistribution of one-thirdof the antecryst cargo yielded a crystal-enriched sample with87Sr/86Sr of 0·7058, whereas the complementary crystal-poorsample has 87Sr/86Sr of 0·7068. In other models, crystal-richsamples are enriched in radiogenic Sr. Isotopic heterogeneitiescan be either continuous (controlled by the modal distributionof crystals and melt) or discontinuous (when there is completeseparation of crystals and liquid). The first case may be exemplifiedby some isotopically zoned large-volume rhyolites, formed bythe eruptive inversion of a modally zoned magma chamber. Inthe latter case, the isotopic composition of any (for example)interstitial liquid will be distinct from the isotopic compositionof the bulk crystal fraction. The separation of such an interstitialliquid may explain the presence of isotopically distinct late-stageaplites in plutons. Crystal–melt separation provides anadditional option for the interpretation of isotopically zonedor heterogeneous magmas. This option is particularly attractivefor systems whose chemical variation is otherwise explicableby fractionation-dominated processes. Non-isotopic chemicalheterogeneities can also develop in this fashion. KEY WORDS: isotopic heterogeneity; zoning; hybrid magma; crystal separation; Sr isotopes; aplite; rhyolite  相似文献   
7.
INTROOUcr1ONThe Okinawa Trough is a typical marginal back-arc basin, where its oPening began in rela-tively recent years* There is a great controversy about the origin of its initial magYna. haltand acid volcanic pumice make up the bimedal volcanism in the Okinawa Trough. MOSt of geol-ogists believed that the acid pumice was the preduct of extremely crystal fractionation of baseltInagTna, but the others argued that it should com from the melting of lower-crust. Som de-tailed petrolOgic…  相似文献   
8.
Nowadays there are some chronic serious environmental problems, such as eutrophication, blue tide and so on, in a complicated coastal zone or a semi-enclosed bay, because the water exchanges between an inner bay and an outer sea is weak compared with the supply of contaminant. Under this situation, a method to improve the water quality by 3-dimensional small unsymmetrical structures has been proposed by Komatsu et al. In this paper, several numerical simulations of the tidal current and concentration for various arrangements of bottom roughness in a semi-enclosed model bay are carfled out with a depth-averaged 2-D numerical model. The model is solved by the hybrid finite analytic method with nonstaggered grid. And the SIMPLES algorithm with Rhie and Chow' s momentum interpolation technique is used for the simulation. The effect of Komatsu' s method for water purification is examined by numerical simulation. The result of numerical experiment indicates that it is possible to generate a new tidal residual current and to activate a tidal exchange by bottom roughness arrangement only.  相似文献   
9.
The modified hybrid element method (MHEM) is utilized to predict and analyze wave forces on arbitrarily shaped multiple bodies. This method can be applied to waves of all water depths, i. e. shallow, intermediate, and deep waters, on slowly varying seabed. The MHEM employs the ICCG method to save CPU and storage, thus the computation of wave forces for large multi-body systems can be carried out on microcomputers. Numerical results of the present method are compared with experimental data and other solutions. It is shown that the MHEM provides more accurate solutions of the wave forces than other numerical methods do. Therefore, the methodology presented herein can be used in the design of coastal and ocean structures.  相似文献   
10.
I~IOXThe Okinawa Trough is an extending back--arc basin between the East China Sea Shelf andthe Ry'Ukyu Island Arc of Japan. There are widespreadly distributing acid pumice in the troughand a little basalt just in some area of the extending center. There have been some detailed rePOrtsabout the mineralogy and petrochemical feature of the subalkali tholeiite and alkali trachyte in thetrough (Zhai and Gan, 1995; Li et al., 1997; Qin and Zhai, 1988). This paper mainly reportselectron mic…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号