首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   1篇
地质学   1篇
  2010年   1篇
  2004年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
This paper presents the results of a comprehensive monitoring program designed to investigate the extent of blast induced damage experienced by rock masses extracted by bench stoping methods. An array of triaxial geophones and extensometers were used to monitor blast vibration attenuation and measure hangingwall deformations during stope extraction. In addition, pre and post surveys of the hangingwall rock mass were conducted using a TV borehole camera and cavity survey instrumentation. These surveys were later used to calibrate damage profiles into the stope hangingwalls.

Peak particle velocity, hangingwall deformation measurements and stope surveys were used to develop a site specific damage model that allowed engineers to asses drilling and blasting configurations to minimise the extent of pre-conditioning and damage. In addition the study included the analysis of the frequency response, displacements and accelerations experienced by the excavation as extraction and mine filling progressed. This work aimed at improving our understanding of the influence of blasting on the dynamic behaviour of stope hangingwalls.

The study demonstrated that estimates of the maximum extent of rock mass pre-conditioning and/or damage made through the application of the Holmberg-Persson approach compared well with measured results. In addition, the study found that dynamic loading imparted on an exposed hangingwall from subsequent stope blasting was also expected to contribute to rock mass weakening and that mine filling was crucial to arrest further deterioration. Hangingwall accelerations were used to demonstrate that larger openings may be more susceptible to dynamic loading.  相似文献   
2.
Tectonic inversion is a common phenomenon in island arc settings, especially in back‐arc basins. The reactivation of normal faults as thrusts, triggered by tectonic inversion, produces typical inversion fault‐related folds and thrusts in the hangingwall. These hangingwall inversion geometries are affected by two factors: the geometry of the underlying master fault and the angle of inclined simple shear relative to the regional dip of strata, in the case that the deformation is approximated by simple shear. This study employed numerical simulations to analyse the influence of the antithetic shear angle on the geometry of the hangingwall and displacement along the master fault. The simulation results reveal that a steeply inclined shear vector during extension produces a narrow, steep‐sided half‐graben, whereas a gently inclined shear produces a wide, open basin. After tectonic inversion, a tight anticline is formed under steeply inclined shear, whereas an open anticline is formed under gently inclined shear. Antithetic shear results in reduced total displacement along the master fault, and the greater the angle between the shear direction and the regional dip, the greater the displacement along the master fault. Because the deformation geometry of syn‐extension layers is affected by extension followed by contraction, a change in the shear angle during tectonic inversion produces a wide variety of deformation geometries. Comparison of the simulation results with the results of analogue modelling suggests that the shear angle decreases by 5° during the transition from extension to tectonic inversion and that such a change may be commonly observed in natural geological structures. These results highlight the benefits of numerical simulations, which can be used to readily examine a variety of constraining parameters and thereby lead to a better understanding of the mechanism of hangingwall deformation, avoiding erroneous estimates of the amount of fault displacement.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号