首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   3篇
  2010年   1篇
  2008年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
In the Gran Paradiso massif (western Alps), the boundary between the Erfaulet orthogneiss and the overlying metasediments (Money Complex) is interpreted as a Late Palaeozoic intrusive contact. Major arguments in favour of this hypothesis are: (i) the obliquity of the sedimentary layering with respect to the contact; (ii) the presence of aplitic dykes within the Money Complex; (iii) the lack of a mylonitic zone; and (iv) rare relics of an early generation of garnet in the Money metasediments, interpreted as evidence of the contact metamorphism of the Erfaulet granite. To cite this article: B. Le Bayon, M. Ballèvre, C. R. Geoscience 336 (2004).  相似文献   
2.
Election probe microanalysis of indicator minerals is extensively used in the exploration for kimberlite deposits, the evaluation of specific kimberlite occurrences for their diamond bearing potential and to classify grains into different chemical and lithological mantle associations. Kimberlite exploration programmes can involve several tens of thousands of indicator mineral analyses. Procedures for monitoring data quality and consistency of analyses across large data sets are commonly absent. Suitable monitor minerals should be used to verify the data quality of kimberlite exploration and evaluation data sets. This material should have a suitable composition, be homogenous, be available in sufficient quantities and have a similar appearance to the unknown samples. Garnet P1, a megacryst garnet from the Premier kimberlite, was found to have a suitable composition as a monitor for kimberlite garnet analyses. Data were collected on the monitor material at regular intervals during routine analyses, over an extended period, both as a fixed grain mounted on the sample holder and as separate grains set within batches of routine samples. The data were evaluated to assess the quality and consistency in the analyses of large data sets over time. The monitor material was also analysed at independent laboratories using their routine analytical set-up and calibration procedures for comparative purposes. Values are given for the mean ± 2s range, which can serve as guide values for acceptable analyses for all elements.  相似文献   
3.
Mantle xenoliths brought to the surface by kimberlite magmas along the south-western margin of the Kaapvaal craton in South Africa can be subdivided into eclogites sensu stricto, kyanite eclogites and orthopyroxene eclogites, all containing omphacite, and garnet clinopyroxenites and garnet websterites characterised by diopside. Texturally, chemically (major elements) and thermally, we observe an evolution from garnet websterites (TEG = 742–781 °C) towards garnet clinopyroxenites (TEG = 715–830 °C) and to eclogites (TEG = 707–1056 °C, mean value of 913 °C). Pressures calculated for orthopyroxene-bearing samples suggest upper mantle conditions of equilibration (P = 16–33 kb for the garnet websterites, 18 kb for a garnet clinopyroxenite and 23 kb for an opx-bearing eclogite). The overall geochemical similarity between the two groups of xenoliths (omphacite-bearing and diopside-bearing) as well as the similar trace element patterns of clinopyroxenes and garnet suggest a common origin for these rocks. Recently acquired oxygen isotope data on garnet (δ18Ognt = 5.25–6.78 ‰ for eclogites, δ18Ognt = 5.24–7.03 ‰ for garnet clinopyroxenites) yield values ranging from typical mantle values to other interpreted as resulting from low-temperature alteration or precursors sea-floor basalts and associated rocks. These rocks could then represent former magmatic oceanic rocks that crystallised from a same parental magma as plagioclase free diopside-bearing and plagioclase-bearing crustal rocks. During subduction, these oceanic rock protoliths equilibrated at mantle depth, with the plagioclase-bearing rocks converting to omphacite and garnet-bearing lithologies (eclogites sensu largo), whereas the plagioclase-free diopside-bearing rocks converted to diopside and garnet-bearing lithologies (garnet websterites and garnet clinopyroxenites).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号