首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   5篇
  国内免费   23篇
地球物理   6篇
地质学   35篇
海洋学   1篇
自然地理   3篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2012年   5篇
  2011年   2篇
  2010年   5篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   4篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
以取自泥石流易发区的182个砾石土土样为基础,进行室内颗分试验,通过分形理论计算各土样的分维值,经计算发现,泥石流源区砾石土以一重分形为主,一重分形的土样占样本总数的88.46%,一重分形土样的分维值介于2.250~2.798之间;以此数据为基础配置土样,通过自制、可控的常水头试验装置进行渗透试验。试验结果表明,渗透系数k与分维值D之间有极显著的相关性,且在干密度为1.8 g/cm3时相关性最好。通过多元回归分析发现,不同密度条件下,k与D之间均有较好的幂函数关系;相同的分维值条件下土样的渗透系数随密度的增大呈减小的趋势,分维值在2.450~2.600之间时,样本的干密度 与渗透系数k之间的幂函数关系较为明显。试验结果可以为泥石流启动的临界雨量研究提供理论基础,提高已有预报模型的普适性及精度。  相似文献   
2.
碎块石土由于块石含量较高,块石粒径较大,其水力学参数的确定具有一定困难。首先,采用双套环法对三峡库区泄滩滑坡的滑体碎块石土饱和渗透系数进行了原位试验,并根据土层孔隙率、颗粒级配等因素采用相关经验公式对试验结果进行了分析。其次,结合使用张力计和体积含水率仪对其土水特征曲线进行了现场模拟试验,并采用Fredlund模型对试验结果进行了拟合分析。最后,根据土水特征曲线和饱和渗透系数,采用经验公式估算了其非饱和渗透系数。试验及分析表明,该滑坡的碎块石土层的饱和渗透系数为(1.78~3.2)×10-2 cm/s,为强渗透性;材料的细颗粒含量越少,有效粒径及控制粒径越大,不均匀系数越小,相应的渗透系数越大。相关研究成果可以为泄滩滑坡非饱和非稳定渗透计算提供参数依据,并对同类型土体非饱和水力学参数的确定具有一定的借鉴意义。  相似文献   
3.
蒋家沟砾石土的特性及其对斜坡失稳的意义   总被引:1,自引:0,他引:1  
王志兵  汪稔  胡明鉴  陈中学 《岩土力学》2010,31(Z2):206-211
云南蒋家沟是世界上著名的由降雨导致泥石流、浅层滑坡频发的沟谷之一。组成蒋家沟斜坡表层的砾石土具有孔隙度高、级配宽、不均匀系数大等特点,级配曲线为上凹型或双峰型,为内在不稳定性土。X射线衍射分析表明,粒径小于1 mm 的细粒部分主要由绿泥石和伊利石等黏土矿物及次生石英组成,黏土矿物会影响砾石土的物理力学性质。在环境电镜扫描中观测了砾石土的微观结构,发现一种特殊的“桥式”胶结结构,并在遇水条件下发生断裂,不仅降低了微弱黏聚力,而且土颗粒容易分离成粒径为数十微米的散微粒。这与砾石土中黏性部分具有高分散性有关。此外这些散微粒在自滤过程中会能发生运移,并在孔喉等处积聚而堵塞孔隙,会降低砾石土的渗透性以及有利于斜坡中暂态上层滞水的积聚。  相似文献   
4.
张嘎  张建民  吴伟 《岩土力学》2008,29(6):1530-1534
建立了可描述粗粒土单调和循环力学特性的一个亚塑性本构模型。基于亚塑性理论的基本框架,引入临界状态参数,建立了一个新的粗粒土亚塑性模型,给出了数学公式及参数确定方法。采用该模型对粗粒土单调和循环加载试验进行了模拟和预测。该模型无需判断加卸载、参数较少、易于三维化,能够较全面地描述单调和循环荷载作用下粗粒土的主要力学特性,如强度与围压的非线性关系,胀缩规律与围压相关、卸载体缩、体变随加载过程累积等主要体变特性等。  相似文献   
5.
This paper examined sequence‐stratigraphic features of a gravelly fluvial system of the Iwaki Formation, which developed in a forearc‐basin setting in Northeast Japan during the Eocene through Oligocene. On the basis of three‐dimensional architectural element analysis, we discriminated three major cycles of channel complexes, which contain ten component channel deposits in total in the fluvial succession. Component channel deposits in the uppermost part of each cycle are sandier and associated with overbank muddy deposits and coal beds as compared with those in the lower part of the cycle. Mean clast‐size also decreases upsection in the entire gravelly fluvial deposits. The fluvial succession is interpreted to have been deposited in response to an overall rise in relative sea level that was superimposed by three short‐term relative sea‐level rises on the basis of vertical stacking patterns and component lithofacies features of channel deposits, and of correlation of the fluvial succession with an age‐equivalent marine succession in an area about 50 km offshore. However, geometry and stacking patterns of the channel complexes do not exhibit any distinct temporal variation and amalgamated channel and bar deposits are dominant throughout the transgressive fluvial succession. On the other hand, an overall fining‐upward pattern of the entire Iwaki Formation fluvial deposits in association with three component fining‐upward patterns is distinct, and is interpreted to be consistent with the tenet of the standard fluvial sequence‐stratigraphic models. This indicates that the present example represents one type of variation in the standard fluvial sequence‐stratigraphic models, possibly reflecting the forearc‐basin setting, which is generally represented by higher valley slope, higher shedding of coarse‐grained sediments, and shorter longitudinal profiles to the coastal area as compared with a passive‐continental‐margin setting.  相似文献   
6.
冯蕊  何蕴龙 《岩土力学》2015,36(Z2):485-491
在深厚覆盖层上建筑的高砾石土心墙堆石坝得到迅猛发展的同时,正确地认识坝体变形规律和合理地数值模拟是不可忽视的问题。堆石坝变形的影响因素多且复杂,监测成果的分析对研究上述问题具有重要意义。以硗碛大坝的监测资料为基础,结合坝体的填筑和蓄水过程,对位于深厚覆盖层上的百米级砾石土心墙堆石坝的变形规律进行了系统分析,并与其坝高、覆盖层深度、河谷宽度等方面都具有相似性的毛尔盖大坝监测资料进行了对比分析。通过分析两座大坝监测结果,对坝体的变形特性进行了规律性总结,对湿化和蠕变作用以及水库填筑和蓄水过程对坝体变形的影响有了一定认识。分析结论可为正确认识以及合理模拟和预测同类坝体的变形特性提供参考和依据。  相似文献   
7.
A quantitative, three‐dimensional depositional model of gravelly, braided rivers has been developed based largely on the deposits of the Sagavanirktok River in northern Alaska. These deposits were described using cores, wireline logs, trenches and ground‐penetrating radar profiles. The origin of the deposits was inferred from observations of: (1) channel and bar formation and migration and channel filling, interpreted from aerial photographs; (2) water flow during floods; and (3) the topography and texture of the river bed at low‐flow stage. This depositional model quantitatively represents the geometry of the different scales of strataset, the spatial relationships among them and their sediment texture distribution. Porosity and permeability in the model are related to sediment texture. The geometry of a particular type and scale of strataset is related to the geometry and migration of the bedform type (e.g. ripples, dunes, bedload sheets, bars) associated with deposition of the strataset. In particular, the length‐to‐thickness ratio of stratasets is similar to the wavelength‐to‐height ratio of associated bedforms. Furthermore, the wavelength and height of bedforms such as dunes and bars are related to channel depth and width. Therefore, the thickness of a particular scale of strataset (i.e. medium‐scale cross‐sets and large‐scale sets of inclined strata) will vary with river dimensions. These relationships between the dimensions of stratasets, bedforms and channels mean that this depositional model can be applied to other gravelly fluvial deposits. The depositional model can be used to interpret the origin of ancient gravelly fluvial deposits and to aid in the characterization of gravelly fluvial aquifers and hydrocarbon reservoirs.  相似文献   
8.
砂土液化是地震主要次生地质灾害之一。在512汶川地震中,德阳等地发生较大面积砂土液化现象。为详细了解液化带工程地质基本特征,选择板桥学校液化带进行详细液化震害调查、钻探和现场试验。结果表明:(1)液化震害典型,主要包括喷水冒砂、地表裂缝、侧移和基础下沉等;(2)砾石层是唯一的无粘性土层,砾石层分为性质不同的全新世沉积和更新世沉积两部分,未见砂层分布;(3)液化土层是全新统砾石层,该砾石的颗粒大小分布特征表现为级配不良,并有粒组缺失现象;(4)非液化盖层对喷出物有过滤作用,砂粒等细颗粒容易沿裂缝喷出地表,卵砾石等粗颗粒受阻留在土层中,导致喷出物为砂土。  相似文献   
9.
This paper reviews the role of alluvial soils in vegetated gravelly river braid plains. When considering decadal timescales of river evolution, we argue that it becomes vital to consider soil development as an emergent property of the developing ecosystem. Soil processes have been relatively overlooked in accounts of the interactions between braided river processes and vegetation, although soils have been observed on vegetated fluvial landforms. We hypothesize that soil development plays a major role in the transition (speed and pathway) from a fresh sediment deposit to a vegetated soil‐covered landform. Disturbance (erosion and/or deposition), vertical sediment structure (process history), vegetation succession, biological activity and water table fluctuation are seen as the main controls on early alluvial soil evolution. Erosion and deposition processes may not only act as soil disturbing agents, but also as suppliers of ecosystem resources, because of their role in delivering and changing access (e.g. through avulsion) to fluxes of water, fine sediments and organic matter. In turn, the associated initial ecosystem may influence further fluvial landform development, such as through the trapping of fine‐grained sediments (e.g. sand) by the engineering action of vegetation and the deposit stabilization by the developing aboveground and belowground biomass. This may create a strong feedback between geomorphological processes, vegetation succession and soil evolution which we summarize in a conceptual model. We illustrate this model by an example from the Allondon River (Switzerland) and identify the research questions that follow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
10.
The Pleistocene Higashikanbe Gravel, which crops out along the Pacific coast of the Atsumi Peninsula, central Japan, consists of well‐sorted, pebble‐ to cobble‐size gravel beds with minor sand beds. The gravel includes large‐scale foreset beds (5–10 m high) and overlying subhorizontal beds (0·5–3 m thick), showing foreset and topset structure, from which the gravel has previously been interpreted as deposits of a Gilbert‐type delta. However, (1) the gravel beds lack evidence of fluvial activity, such as channels in the subhorizontal beds; (2) the foresets incline palaeolandwards; (3) the gravels fill a fluvially incised valley; and (4) the gravels overlie low‐energy deposits of a restricted environment, such as a bay or an estuary. The foresets generally dip towards the inferred palaeoshoreline, indicating landward accretion of gravel. Reconstruction of the palaeogeography of the peninsula indicates that the Higashikanbe Gravel was deposited as a spit similar to that developed at the western tip of the present Atsumi Peninsula, rather than as a delta. According to the new interpretation, the large‐scale foreset beds are deposits on the slopes of spit platforms and accreted in part to the sides of small islets that are fragments of the submerging spit during relative sea‐level rise. The subhorizontal beds include nearshore deposits on the spit platform topsets and deposits of gravel shoals or bars, which are reworked sediments of the spit beach gravels during a transgression. The lack of spit beach facies in the subhorizontal beds results from truncation by shoreface erosion. Dome structure, which is a cross‐sectional profile of a recurved gravel spit at its extreme point, and sandy tidal channel deposits deposited between the small islets were also identified in the Higashikanbe Gravel. The Higashikanbe Gravel fills a fluvially incised valley and occupies a significant part of a transgressive systems tract, suggesting that gravelly spits are likely to be well developed during transgressions. The large‐scale foreset beds and subhorizontal beds of gravelly spits in transgressive systems tracts contrast with the foreset and topset beds of deltas, characteristic of highstand, lowstand and shelf‐margin systems tracts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号