首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2022年   1篇
  2012年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
As the product of a variety of sediment sources and sedimentation (and re‐sedimentation) and erosion processes, the geomorphology and sedimentology of carbonate slopes are highly variable. The purpose of this study is to describe sub‐bottom profiles and side‐scan sonar, multibeam and optical data acquired by an autonomous underwater vehicle to explore variability in geomorphological and sedimentological character of the present‐day platform‐marginal, uppermost slope environments (< 240 m water depth) on the north, open‐ocean facing flank of Little Bahama Bank, Bahamas. Although at time scales of greater than 100 ka this margin is progradational, the data illustrate a complex juxtaposition of erosional and depositional processes and features. Erosion is evidenced by two prominent escarpments (70 m and 120 m) that expose eroded, bedded rocky outcrops. These escarpments are interpreted to represent relict features, related to past sea‐level positions, although they still may be shedding debris. Aside from erosional remnants, sedimentation and active transport is indicated by several features, including active bedforms (especially above the 70 m escarpment, but ripples occur to depths of ca 200 m), several mass transport complexes that overlie and cover the lower escarpment, gravity flow deposits and rare slump features. Similarly, a thick (up to 20 m) onlapping sediment wedge, interpreted to be Holocene in age, suggests lateral accretion of the slope by more than 75 m in this period. Data illustrate that this open‐ocean margin is distinct from windward margins in the Bahamas, which typically include near‐vertical walls of erosion or bypass, flanked downdip by rubble and talus, and leeward margins, which have onlapping muddy wedges, but that lack marked terraces or escarpments. Collectively, the results provide perspectives into the nature and controls on complex geomorphological patterns of erosion and deposition in Holocene uppermost slope systems, concepts potentially applicable to ancient analogues.  相似文献   
2.
This paper regards the lower Pleistocene temperate-water carbonate deposits disconformably overlying an escarpment made up of faulted Cretaceous to Miocene limestones of the Apulia Foreland (southern Italy). Study deposits discontinuously crop out along the present-day eastern Salento sea cliff, and form isolated fan-shaped bodies, up to 1 km wide and up to 40 to 50 m thick, each of them covering an area of a few square kilometres. The internal arrangement of beds is represented by up to 25° to 30° lobate, seaward dipping clinobeds thinning and onlapping onto a rocky foreslope in the proximal sector and passing to gently inclined to sub-horizontal strata in the distal sector. Seven facies were distinguished, mainly composed of coarse-grained skeletal carbonates made up of a heterozoan association including coralline algae, large and small benthic foraminifera, echinoids, molluscs, bryozoans and serpulids. Since clinobeds were formed thanks to hyperconcentrated density flows (grain flows) bypassing the upper part of the inherited escarpment, these skeletal grains represent ex situ deposits whose shallow-marine factory was located upward (landward) with respect to the bypassed zone, likely in the almost flat area on top of the Salento Peninsula. Clinobeds are often affected by tens of metres wide and long channel-like structures interpreted as landslide scars. Inside these gullies, contorted beds (slumps) or matrix-supported intra-bioclastic floatstone/rudstone (massive deposits) are present. The occurrence of supercritical-flow structures (for example, backset-bedded beds) indicates the development of hydraulic jumps along the steep slope of gullies. Since these clinostratified, fan-shaped carbonate bodies represent carbonate slopes, and that the latter are known as aprons, normally related to linear sourced sediments, an acceptable oxymoron for studied fan-shaped carbonate bodies is suggested: ‘isolated base-of-slope aprons’.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号