首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   4篇
地球物理   18篇
地质学   3篇
自然地理   4篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2016年   2篇
  2013年   9篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2006年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
Concepts derived from previous studies of offshore winds on natural dunes are evaluated on a dune maintained for shore protection during three offshore wind events. The potential for offshore winds to form a lee‐side eddy on the backshore or transfer sediment from the dune and berm crest to the water are evaluated, as are differences in wind speed and sediment transport on the dune crest, berm crest and a pedestrian access gap. The dune is 18–20 m wide near the base and has a crest 4.5 m above backshore elevation. Two sand‐trapping fences facilitate accretion. Data were obtained from wind vanes on the crest and lee of the dune and anemometers and sand traps placed across the dune, on the beach berm crest and in the access gap. Mean wind direction above the dune crest varied from 11 to 3 deg from shore normal. No persistent recirculation eddy occurred on the 12 deg seaward slope. Wind speed on the berm crest was 85–89% of speed at the dune crest, but rates of sediment transport were 2.27 times greater during the strongest winds, indicating that a wide beach overcomes the transport limitation of a dune barrier. Limited transport on the seaward dune ramp indicates that losses to the water are mostly from the backshore, not the dune. The seaward slope gains sand from the landward slope and dune crest. Sand fences causing accretion on the dune ramp during onshore winds lower the seaward slope and reduce the likelihood of detached flows during offshore winds. Transport rates are higher in access gaps than on the dune crest despite lower wind speeds because of flatter slopes and absence of vegetation. Transport rates across dunes and through gaps can be reduced using vegetation and raised walkover structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
2.
Multiple ridges across prograding coasts may display variable geometries, commonly expressed through varying elevations. Changes in ridge elevation have been traditionally related to the occurrence of fluctuating progradation rates, which might, in turn, be driven by shifting environmental conditions. Here, we explore the geometry and growth mechanisms of multiple ridges, generated at Barreta Island (Ria Formosa, southern Portugal), as a consequence of the rapid progradation of the island over the last 70 years, following the artificial fixation of the downdrift Faro-Olhão inlet with jetties in 1955. The variability in the morphology of these features was analysed in combination with available wind and wave data, in order to better distinguish growth mechanisms and understand the main parameters determining the final geometry of the observed ridges. The results suggest that (1) most of the identified ridges fall in the beach ridge classification, as they have been mostly built by marine processes, and (2) the parameters derived from, or closely related to wave climate variability (e.g. progradation rates, storm occurrence) can jointly explain most of the observed morphological changes, while aeolian processes played a secondary role. Indeed, ridge geometry appears mainly controlled by progradation rates, with higher ridges associated with lower progradation rates. Progradation rate, in turn, is mostly related to longshore wave power, storminess, and the occurrence storm groups. Yet, the final configuration of ridges can also be affected by runup levels and onshore winds. Therefore, establishing the relation between ridge geometry and wave climate is not a straightforward task, because of the complex processes and interactions that control coastal morphodynamics. © 2019 John Wiley & Sons, Ltd.  相似文献   
3.
Increases in the frequency and magnitude of extreme water levels and storm surges are correlated with known indices of climatic variability (CV), including the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), along some areas of the British Columbia coast. Since a shift to a positive PDO regime in 1977, the effects of ENSO events have been more frequent, persistent, and intense. Teleconnected impacts include more frequent storms, higher surges, and enhanced coastal erosion. The response of oceanographic forcing mechanisms (i.e. tide, surge, wave height, wave period) to CV events and their role in coastal erosion remain unclear, particularly in western Canada. As a first step in exploring the interactions between ocean–atmosphere forcing and beach–dune responses, this paper assembles the historic erosive total water level (TWL) regime and explores relations with observed high magnitude storms that have occurred in the Tofino‐Ucluelet region (Wickaninnish Bay) on the west coast of Vancouver Island, British Columbia, Canada. Extreme events where TWL exceeded an erosional threshold (i.e. elevation of the beach–foredune junction) of 5·5 m aCD are examined to identify dominant forcing mechanisms and to classify a regime that describes erosive events driven principally by wave conditions (61·5%), followed by surge (21·8%), and tidal (16·7%) effects. Furthermore, teleconnections between regional CV phenomena, extreme storm events and, by association, coastal erosion, are explored. Despite regional sea level rise (eustatic and steric), rapid crustal uplift rates have resulted in a falling relative sea level and, in some sedimentary systems, shoreline progradation at rates approaching +1·5 m a–1 over recent decades. Foredune erosion occurs locally with a recurrence interval of approximately 1·53 years followed by rapid rebuilding due to high onshore sand supply and often in the presence of large woody debris and rapidly colonizing vegetation in the backshore. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
4.
The purpose of this study was to quantify relationships between season, sediment availability, sediment transport pathways, and beach/foredune morphology at Greenwich Dunes, PEI. This was done for periods ranging from a few days to multiple decades using erosion pins, bedframe measurements, annual surveys, and digital photogrammetry using historical aerial photographs. The relative significance of seasonal/annual processes versus response of the foredune system to broader geomorphic controls (e.g. relative sea level rise, storms, etc.) was also assessed. The data show that there are clear seasonal differences in the patterns of sand supply from the beach to the foredune at Greenwich and that there are differences in sediment supply to the foredune between the east and west reaches of the study area, resulting in ongoing differences in foredune morphology. They also demonstrate that models that incorporate wind climate alone, or even models that include other factors like beach moisture, would not be able to predict the amount of sediment movement from the beach to the foredune in this environment unless there were some way to parameterize system morphology, especially the presence or absence of a dune ramp. Finally, the data suggest that the foredune can migrate landward while maintaining its form via transfers of sediment from the stoss slope, over the crest, and onto the lee slope. Although the rate of foredune development or recovery after disturbance changes over time due to morphological feedback, the overall decadal evolution of the foredune system at Greenwich is consistent with, and supports, the Davidson‐Arnott (2005) conceptual model of dune transgression under rising sea level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
5.
ABSTRACT

Composition and richness of coastal vegetation differs with distance from the water and sheltering by topography. Transition from pioneer beach plants to mature forests is expected to be narrow on low wave energy coasts with a tropical climate favorable to vegetation growth. The goal of this paper is to determine whether vegetation on the beach and foredune will be denser and have a greater number of species and more woody shrubs near the water as wave and wind stresses diminish because of favorable shoreline orientation within a pocket beach. Field data on beach width, beach mobility, dune height, vegetation species, vegetation height and percent vegetation cover were collected in Puerto Rico along six cross-shore transects. Beaches are more stable at transects in the lee of an eolianite barrier and a tombolo. The vegetation gradient there is compressed, with denser, taller, more diverse vegetation and more tree species close to the waterline than at more exposed sites. The lack of mobility of the beaches and dunes and lack of geomorphically significant disturbance events is in contrast to the conspicuous feedbacks between overwash, topography, and vegetation on exposed mid-latitude coasts, revealing the need for more study of low-energy beach environments.  相似文献   
6.
The form, height and volume of coastal foredunes reflects the long‐term interaction of a suite of nearshore and aeolian processes that control the amount of sand delivered to the foredune from the beach versus the amount removed or carried inland. In this paper, the morphological evolution of more than six decades is used to inform the development of a simple computer model that simulates foredune growth. The suggestion by others that increased steepness of the seaward slope will retard sediment supply from the beach to the foredune due to development of a flow stagnation zone in front of the foredune, hence limiting foredune growth, was examined. Our long‐term data demonstrate that sediment can be transferred from the beach to the foredune, even with a steep foredune stoss slope, primarily because much of the sediment transfer takes place under oblique rather than onshore winds. During such conditions, the apparent aspect ratio of the dune to the oncoming flow is less steep and conditions are not as favourable for the formation of a stagnation zone. The model shows that the rate of growth in foredune height varies as a function of sediment input from the beach and erosion due to storm events, as expected, but it also demonstrates that the rate of growth in foredune height per unit volume increase will decrease over time, which gives the perception of an equilibrium height having been reached asymptotically. As the foredune grows in size, an increasing volume of sediment is needed to yield a unit increase in height, therefore the apparent growth rate appears to slow. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
7.
The nature of wind flow over a small, 0.6 m high foredune scarp is investigated on the Sir Richard Peninsula, South Australia during a variety of incident wind directions and speeds. The study provides additional supporting evidence that the presence of the scarp and the dune exerts a strong influence on a landwards trending reduction in wind velocity and an increase in turbulence, with the greatest area of turbulence occurring near and at the foredune scarp base. For an incident oblique wind, an alongshore helicoidal flow is formed within a separation region along the scarp basal region. In this region, the coefficient of variation (CV) of wind speed is high and displays significant fluctuations. The flow at the scarp crest is compressed, streamlined and accelerated, turbulence is suppressed, and local jets may occur depending on the incident wind approach angle. Jets are more likely where the incident flow is perpendicular or nearly so. A flow separation region does not develop downwind of the scarp crest where the morphology of the foredune stoss slope downwind of the scarp is more convex (as in this case) rather than relatively flat, and possibly due to the presence of vegetation at the scarp crest. A tentative model of the flow regions developed across a backshore–scarp–foredune region during oblique incident flow is provided. © 2018 John Wiley & Sons, Ltd.  相似文献   
8.
Coastal dunes are dynamic features that are continuously evolving due to constructive (e.g., wind- and wave-driven sediment transport) and destructive (e.g., elevated total water levels during storm events) processes. However, the relative importance of these processes in determining dune evolution is often poorly understood. In this study, ten lidar datasets from 1997 to 2016 are used to determine the relative role of erosion and accretion processes driving foredune change on the coast of Cape Lookout National Seashore, North Carolina, USA. Beach and dune morphometrics reveal that dune toe locations have generally retreated since 1997, while dune crest heights accreted by 0.01–0.02 m/year. We develop three univariate metrics that represent (1) the potential for erosion, i.e., total water level impact hours per year, (2) accretion, i.e., dune building hours per year, and (3) the relative net effect of foredune accretion and erosion processes, i.e., constructive–destructive dune forcing (CDDF) ratio, and test the correlative power of these metrics in explaining changes in foredune morphology. The total water level impact hours per year metric explained as much as 66% and 67% of the variance in dune crest and toe elevations, respectively, across the nearly two decades of dune evolution. The greatest number of dune building hours per year and largest dunes within the study site co-occurred at locations exposed to the dominant cross-shore wind direction as a result of varying shoreline orientation. The CDDF ratio was positively correlated to changes in the dune toe elevation in approximately 70% of dunes within the study site, outperforming the impact and dune building hours per year metrics. Our results show that these three metrics can provide first-order estimates of dune morphometric change across multiple spatial and temporal scales, which may be particularly useful at sites where lidar acquisition is intermittent.  相似文献   
9.
Sediment transport and short‐term morphologic change were evaluated at a site where sand fences are deployed and the beach is raked (Managed Site) and a site where these human adjustments are not practiced (Unmanaged Site). Data were gathered across the seaward portion of a low foredune when winds blew nearly shore‐normal at mean speeds 8.9 to 9.3 m s‐1. Data from traps revealed sediment transport rates at unvegetated portions of the foredune crest (40.2 to 43.5 kg m‐1 h‐1) were greater than on the backshore (4.9 to 11.2 kg m‐1 h‐1) due to onshore decreases in surface moisture and speed‐up of the wind passing over the foredune. Data from erosion pins indicate sediment input to the dune was 1.48 m3 m‐1 alongshore at the Managed Site and 1.25 m3 m‐1 at the Unmanaged Site. The Unmanaged Site had deposition at the dune toe, erosion at mid‐slope, and deposition at the crest. Deposition occurred at mid‐slope on the Managed Site near a partially buried (0.58 m high) fence with a porosity of about 65%. Deposition at partially buried wrack on the upper backshore and dune toe at the Unmanaged Site was about twice as great as deposition in this zone at the Managed Site. Results indicate that: (1) the seaward slope of the foredune can be a more important source of sand to the lee of the crest than the beach; (2) wrack near the toe can decrease transport into the foredune; (3) a scour zone can occur on the foredune slope above the wrack line; (4) a fence placed in this location can promote deposition and offset scour, but fences can restrict delivery of sediment farther inland. Evaluation of alternative configurations of fences and strategies for managing wrack is required to better determine the ways that humans modify foredunes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
10.
Wind flow and sand transport intensity were measured on the seaward slope of a vegetated foredune during a 16 h storm using an array of sonic anemometers and Wenglor laser particle counters. The foredune had a compound seaward slope with a wave‐cut scarp about 0.5 m high separating the upper vegetated portion from the lower dune ramp, which was bare of vegetation. Wind direction veered from obliquely offshore at the start of the event to obliquely onshore during the storm peak and finally to directly onshore during the final 2 h as wind speed dropped to below threshold. Sand transport was initially inhibited by a brief period of rain at the start of the event but as the surface dried and wind speed increased sand transport was initiated over the entire seaward slope. Transport intensity was quite variable both temporally and spatially on the upper slope as a result of fluctuating wind speed and direction, but overall magnitudes were similar over the whole length. Ten‐minute average transport intensity correlates strongly with mean wind speed measured at the dune crest, and there is also strong correlation between instantaneous wind speed and transport intensity measured at the same locations when the data are smoothed with a 10 s running mean. Transport on the beach for onshore winds is decoupled from that on the seaward slope above the small scarp when the wind angle is highly oblique, but for wind angles <45° from shore perpendicular some sand is transported onto the lower slope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号